Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 15,675 Bytes
1a74358 277ab09 98a427a 277ab09 1a74358 b6dee00 277ab09 1a74358 277ab09 1a74358 277ab09 ecbe10b 1a74358 98a427a 277ab09 1a74358 277ab09 1a74358 277ab09 98a427a 1a74358 5d89fbb 676f4c4 5d89fbb 98a427a 277ab09 1a74358 277ab09 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 98a427a 277ab09 1a74358 277ab09 1a74358 277ab09 1a74358 277ab09 1a74358 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 1a74358 277ab09 1a74358 277ab09 1a74358 277ab09 1a74358 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 676f4c4 ecbe10b 277ab09 ecbe10b 277ab09 ecbe10b 277ab09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
"""
This module demonstrates a Streamlit application for masking Personally Identifiable
Information (PII) in Hebrew text using the GolemPII-v1 model.
"""
import time
from typing import List, Dict, Tuple
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification
# Constants for model name and entity colors
MODEL_NAME = "CordwainerSmith/GolemPII-v1"
ENTITY_COLORS = {
"PHONE_NUM": "#FF9999",
"ID_NUM": "#99FF99",
"CC_NUM": "#9999FF",
"BANK_ACCOUNT_NUM": "#FFFF99",
"FIRST_NAME": "#FF99FF",
"LAST_NAME": "#99FFFF",
"CITY": "#FFB366",
"STREET": "#B366FF",
"POSTAL_CODE": "#66FFB3",
"EMAIL": "#66B3FF",
"DATE": "#FFB3B3",
"CC_PROVIDER": "#B3FFB3",
}
# Example sentences for demonstration
EXAMPLE_SENTENCES = [
"砖诐 诪诇讗: 转诇诪讛 讗专讬讗诇讬 诪住驻专 转注讜讚转 讝讛讜转: 61453324-8 转讗专讬讱 诇讬讚讛: 15/09/1983 讻转讜讘转: 讗专诇讜讝讜专讜讘 22 驻转讞 转拽讜讜讛 诪讬拽讜讚 2731711 讗讬诪讬讬诇: [email protected] 讟诇驻讜谉: 054-8884771 讘驻讙讬砖讛 讝讜 谞讚讜谞讜 驻转专讜谞讜转 讟讻谞讜诇讜讙讬讬诐 讞讚砖谞讬讬诐 诇砖讬驻讜专 转讛诇讬讻讬 注讘讜讚讛. 讛诪砖转转祝 讬转讘拽砖 诇讛爪讬讙 诪爪讙转 讘谞讜砖讗 讘驻讙讬砖讛 讛讘讗讛 讗砖专 砖讬诇诐 讘 5326-1003-5299-5478 诪住讟专拽讗专讚 注诐 讛讜专讗转 拽讘注 诇 11-77-352300",
]
# Model details for display in the sidebar
MODEL_DETAILS = {
"name": "GolemPII-v1: Hebrew PII Detection Model",
"description": """
The <a href="https://huggingface.co/CordwainerSmith/GolemPII-v1" target="_blank">GolemPII model</a>
was specifically designed to identify and categorize various types of personally
identifiable information (PII) present in Hebrew text. Its core intended usage
revolves around enhancing privacy protection and facilitating the process of data
anonymization. This makes it a good candidate for applications and systems that
handle sensitive data, such as legal documents, medical records, or any text data
containing PII, where the automatic redaction or removal of such information is
essential for ensuring compliance with data privacy regulations and safeguarding
individuals' personal information. The model can be deployed on-premise with a
relatively small hardware footprint, making it suitable for organizations with
limited computing resources or those prioritizing local data processing.
The model was trained on the <a href="https://huggingface.co/datasets/CordwainerSmith/GolemGuard"
target="_blank">GolemGuard</a> dataset, a Hebrew language dataset comprising over
115,000 examples of PII entities and containing both real and synthetically
generated text examples. This data represents various document types and
communication formats commonly found in Israeli professional and administrative
contexts. GolemGuard covers a wide range of document types and encompasses a
diverse array of PII entities, making it ideal for training and evaluating PII
detection models.
""",
"base_model": "xlm-roberta-base",
"training_data": "Custom Hebrew PII dataset",
"detected_pii_entities": [
"FIRST_NAME",
"LAST_NAME",
"STREET",
"CITY",
"PHONE_NUM",
"EMAIL",
"ID_NUM",
"BANK_ACCOUNT_NUM",
"CC_NUM",
"CC_PROVIDER",
"DATE",
"POSTAL_CODE",
],
}
class PIIMaskingModel:
"""
A class for masking PII in Hebrew text using the GolemPII-v1 model.
"""
def __init__(self, model_name: str):
"""
Initializes the PIIMaskingModel with the specified model name.
Args:
model_name: The name of the pre-trained model to use.
"""
self.model_name = model_name
hf_token = st.secrets["hf_token"]
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
self.model = AutoModelForTokenClassification.from_pretrained(
model_name, token=hf_token
)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
self.model.eval()
def process_text(
self, text: str
) -> Tuple[str, float, str, List[str], List[str], List[Dict]]:
"""
Processes the input text and returns the masked text, processing time,
colored text, tokens, predicted labels, and privacy masks.
Args:
text: The input text to process.
Returns:
A tuple containing:
- masked_text: The text with PII masked.
- processing_time: The time taken to process the text.
- colored_text: The text with PII highlighted with colors.
- tokens: The tokens of the input text.
- predicted_labels: The predicted labels for each token.
- privacy_masks: A list of dictionaries containing information about
the masked PII entities.
"""
start_time = time.time()
tokenized_inputs = self.tokenizer(
text,
truncation=True,
padding=False,
return_tensors="pt",
return_offsets_mapping=True,
add_special_tokens=True,
)
input_ids = tokenized_inputs.input_ids.to(self.device)
attention_mask = tokenized_inputs.attention_mask.to(self.device)
offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()
# Handle special tokens
offset_mapping[0] = None # <s> token
offset_mapping[-1] = None # </s> token
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
predicted_labels = [
self.model.config.id2label[label_id] for label_id in predictions[0]
]
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
masked_text, colored_text, privacy_masks = self.mask_pii_in_sentence(
tokens, predicted_labels, text, offset_mapping
)
processing_time = time.time() - start_time
return (
masked_text,
processing_time,
colored_text,
tokens,
predicted_labels,
privacy_masks,
)
def _find_entity_span(
self,
i: int,
labels: List[str],
tokens: List[str],
offset_mapping: List[Tuple[int, int]],
) -> Tuple[int, str, int]:
"""
Finds the span of an entity starting at the given index.
Args:
i: The starting index of the entity.
labels: The list of labels for each token.
tokens: The list of tokens.
offset_mapping: The offset mapping for each token.
Returns:
A tuple containing:
- The index of the next token after the entity.
- The type of the entity.
- The end character offset of the entity.
"""
current_entity = labels[i][2:] if labels[i].startswith("B-") else labels[i][2:]
j = i + 1
last_valid_end = offset_mapping[i][1] if offset_mapping[i] else None
while j < len(tokens):
if offset_mapping[j] is None:
j += 1
continue
next_label = labels[j]
if next_label.startswith("B-") and tokens[j].startswith(" "):
break
if next_label.startswith("I-") and next_label[2:] != current_entity:
break
if next_label.startswith("I-") and next_label[2:] == current_entity:
last_valid_end = offset_mapping[j][1]
j += 1
elif next_label.startswith("B-") and not tokens[j].startswith(" "):
last_valid_end = offset_mapping[j][1]
j += 1
else:
break
return j, current_entity, last_valid_end
def mask_pii_in_sentence(
self,
tokens: List[str],
labels: List[str],
original_text: str,
offset_mapping: List[Tuple[int, int]],
) -> Tuple[str, str, List[Dict]]:
"""
Masks the PII entities in a sentence.
Args:
tokens: The list of tokens in the sentence.
labels: The list of labels for each token.
original_text: The original text of the sentence.
offset_mapping: The offset mapping for each token.
Returns:
A tuple containing:
- The masked text.
- The colored text.
- A list of dictionaries containing information about the masked
PII entities.
"""
privacy_masks = []
current_pos = 0
masked_text_parts = []
colored_text_parts = []
i = 0
while i < len(tokens):
if offset_mapping[i] is None:
i += 1
continue
current_label = labels[i]
if current_label.startswith(("B-", "I-")):
start_char = offset_mapping[i][0]
next_pos, entity_type, last_valid_end = self._find_entity_span(
i, labels, tokens, offset_mapping
)
if current_pos < start_char:
text_before = original_text[current_pos:start_char]
masked_text_parts.append(text_before)
colored_text_parts.append(text_before)
entity_value = original_text[start_char:last_valid_end]
mask = self._get_mask_for_entity(entity_type)
privacy_masks.append(
{
"label": entity_type,
"start": start_char,
"end": last_valid_end,
"value": entity_value,
"label_index": len(privacy_masks) + 1,
}
)
masked_text_parts.append(mask)
color = ENTITY_COLORS.get(entity_type, "#CCCCCC")
colored_text_parts.append(
f'<span style="background-color: {color}; color: black; padding: 2px; border-radius: 3px;">{mask}</span>'
)
current_pos = last_valid_end
i = next_pos
else:
if offset_mapping[i] is not None:
start_char = offset_mapping[i][0]
end_char = offset_mapping[i][1]
if current_pos < end_char:
text_chunk = original_text[current_pos:end_char]
masked_text_parts.append(text_chunk)
colored_text_parts.append(text_chunk)
current_pos = end_char
i += 1
if current_pos < len(original_text):
remaining_text = original_text[current_pos:]
masked_text_parts.append(remaining_text)
colored_text_parts.append(remaining_text)
return ("".join(masked_text_parts), "".join(colored_text_parts), privacy_masks)
def _get_mask_for_entity(self, entity_type: str) -> str:
"""
Returns the mask for a given entity type.
Args:
entity_type: The type of the entity.
Returns:
The mask for the entity type.
"""
return {
"PHONE_NUM": "[讟诇驻讜谉]",
"ID_NUM": "[转.讝]",
"CC_NUM": "[讻专讟讬住 讗砖专讗讬]",
"BANK_ACCOUNT_NUM": "[讞砖讘讜谉 讘谞拽]",
"FIRST_NAME": "[砖诐 驻专讟讬]",
"LAST_NAME": "[砖诐 诪砖驻讞讛]",
"CITY": "[注讬专]",
"STREET": "[专讞讜讘]",
"POSTAL_CODE": "[诪讬拽讜讚]",
"EMAIL": "[讗讬诪讬讬诇]",
"DATE": "[转讗专讬讱]",
"CC_PROVIDER": "[住驻拽 讻专讟讬住 讗砖专讗讬]",
"BANK": "[讘谞拽]",
}.get(entity_type, f"[{entity_type}]")
def main():
"""
The main function for the Streamlit application.
"""
st.set_page_config(layout="wide")
st.title("馃椏 GolemPII: Hebrew PII Masking Application 馃椏")
st.markdown(
"""
<style>
.rtl { direction: rtl; text-align: right; }
.entity-legend { padding: 5px; margin: 2px; border-radius: 3px; display: inline-block; }
.masked-text {
direction: rtl;
text-align: right;
line-height: 2;
padding: 10px;
background-color: #f6f8fa;
border-radius: 5px;
color: black;
white-space: pre-wrap;
}
.main h3 {
margin-bottom: 10px;
}
textarea {
direction: rtl !important;
text-align: right !important;
}
.stTextArea label {
direction: ltr !important;
text-align: left !important;
}
</style>
""",
unsafe_allow_html=True,
)
# Sidebar with model details
st.sidebar.markdown(
f"""
<div>
<h2>{MODEL_DETAILS['name']}</h2>
<p>{MODEL_DETAILS['description']}</p>
<h3>Supported PII Entities</h3>
<ul>
{" ".join([f'<li><span style="background-color: {ENTITY_COLORS.get(entity, "#CCCCCC")}; color: black; padding: 3px 5px; border-radius: 3px; margin-right: 5px;">{entity}</span></li>' for entity in MODEL_DETAILS['detected_pii_entities']])}
</ul>
</div>
""",
unsafe_allow_html=True,
)
text_input = st.text_area(
"Enter text to mask (separate multiple texts with commas):",
value="\n".join(EXAMPLE_SENTENCES),
height=200,
)
show_json = st.checkbox("Show JSON Output", value=True)
if st.button("Process Text"):
texts = [text.strip() for text in text_input.split(",") if text.strip()]
model = PIIMaskingModel(MODEL_NAME)
for text in texts:
st.markdown(
'<h3 style="text-align: center;">Original Text</h3>',
unsafe_allow_html=True,
)
st.markdown(f'<div class="rtl">{text}</div>', unsafe_allow_html=True)
(
masked_text,
processing_time,
colored_text,
tokens,
predicted_labels,
privacy_masks,
) = model.process_text(text)
st.markdown(
'<h3 style="text-align: center;">Masked Text</h3>',
unsafe_allow_html=True,
)
st.markdown(
f'<div class="masked-text">{colored_text}</div>', unsafe_allow_html=True
)
st.markdown(f"Processing Time: {processing_time:.3f} seconds")
if show_json:
st.json(
{
"original": text,
"masked": masked_text,
"processing_time": processing_time,
"tokens": tokens,
"token_classes": predicted_labels,
"privacy_mask": privacy_masks,
"span_labels": [
[m["start"], m["end"], m["label"]] for m in privacy_masks
],
}
)
st.markdown("---")
if __name__ == "__main__":
main()
|