File size: 15,675 Bytes
1a74358
 
 
 
 
 
 
 
277ab09
98a427a
277ab09
 
 
1a74358
b6dee00
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a74358
277ab09
 
 
 
1a74358
277ab09
ecbe10b
1a74358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a427a
 
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a74358
 
 
 
277ab09
1a74358
 
 
 
 
 
277ab09
98a427a
1a74358
5d89fbb
676f4c4
5d89fbb
98a427a
 
 
277ab09
 
 
 
1a74358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277ab09
 
 
 
 
 
98a427a
277ab09
 
 
 
98a427a
 
277ab09
 
 
 
 
 
98a427a
 
277ab09
98a427a
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a74358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277ab09
 
 
 
 
 
 
 
 
 
 
1a74358
277ab09
 
 
 
 
 
 
 
1a74358
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
1a74358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277ab09
 
 
 
 
 
 
ecbe10b
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecbe10b
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a74358
 
 
 
 
 
 
 
 
277ab09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a74358
 
 
277ab09
 
 
 
 
 
 
 
1a74358
 
 
 
 
 
 
 
277ab09
 
1a74358
277ab09
 
ecbe10b
 
 
277ab09
ecbe10b
 
 
277ab09
 
 
 
 
 
ecbe10b
277ab09
 
ecbe10b
 
277ab09
ecbe10b
277ab09
ecbe10b
277ab09
 
ecbe10b
277ab09
 
 
 
 
 
 
 
 
ecbe10b
 
277ab09
 
676f4c4
ecbe10b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
277ab09
 
 
ecbe10b
 
277ab09
 
 
 
 
 
 
ecbe10b
277ab09
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""
This module demonstrates a Streamlit application for masking Personally Identifiable
Information (PII) in Hebrew text using the GolemPII-v1 model.
"""

import time
from typing import List, Dict, Tuple

import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification


# Constants for model name and entity colors
MODEL_NAME = "CordwainerSmith/GolemPII-v1"

ENTITY_COLORS = {
    "PHONE_NUM": "#FF9999",
    "ID_NUM": "#99FF99",
    "CC_NUM": "#9999FF",
    "BANK_ACCOUNT_NUM": "#FFFF99",
    "FIRST_NAME": "#FF99FF",
    "LAST_NAME": "#99FFFF",
    "CITY": "#FFB366",
    "STREET": "#B366FF",
    "POSTAL_CODE": "#66FFB3",
    "EMAIL": "#66B3FF",
    "DATE": "#FFB3B3",
    "CC_PROVIDER": "#B3FFB3",
}

# Example sentences for demonstration
EXAMPLE_SENTENCES = [
    "砖诐 诪诇讗: 转诇诪讛 讗专讬讗诇讬 诪住驻专 转注讜讚转 讝讛讜转: 61453324-8 转讗专讬讱 诇讬讚讛: 15/09/1983 讻转讜讘转:  讗专诇讜讝讜专讜讘 22  驻转讞 转拽讜讜讛 诪讬拽讜讚 2731711 讗讬诪讬讬诇: [email protected] 讟诇驻讜谉: 054-8884771  讘驻讙讬砖讛 讝讜 谞讚讜谞讜 驻转专讜谞讜转 讟讻谞讜诇讜讙讬讬诐 讞讚砖谞讬讬诐 诇砖讬驻讜专 转讛诇讬讻讬 注讘讜讚讛. 讛诪砖转转祝 讬转讘拽砖 诇讛爪讬讙 诪爪讙转 讘谞讜砖讗 讘驻讙讬砖讛 讛讘讗讛 讗砖专 砖讬诇诐 讘 5326-1003-5299-5478 诪住讟专拽讗专讚 注诐 讛讜专讗转 拽讘注 诇 11-77-352300",
]

# Model details for display in the sidebar
MODEL_DETAILS = {
    "name": "GolemPII-v1: Hebrew PII Detection Model",
    "description": """
        The <a href="https://huggingface.co/CordwainerSmith/GolemPII-v1" target="_blank">GolemPII model</a>
        was specifically designed to identify and categorize various types of personally
        identifiable information (PII) present in Hebrew text. Its core intended usage
        revolves around enhancing privacy protection and facilitating the process of data
        anonymization. This makes it a good candidate for applications and systems that
        handle sensitive data, such as legal documents, medical records, or any text data
        containing PII, where the automatic redaction or removal of such information is
        essential for ensuring compliance with data privacy regulations and safeguarding
        individuals' personal information. The model can be deployed on-premise with a
        relatively small hardware footprint, making it suitable for organizations with
        limited computing resources or those prioritizing local data processing.
        The model was trained on the <a href="https://huggingface.co/datasets/CordwainerSmith/GolemGuard"
        target="_blank">GolemGuard</a> dataset, a Hebrew language dataset comprising over
        115,000 examples of PII entities and containing both real and synthetically
        generated text examples. This data represents various document types and
        communication formats commonly found in Israeli professional and administrative
        contexts. GolemGuard covers a wide range of document types and encompasses a
        diverse array of PII entities, making it ideal for training and evaluating PII
        detection models.
    """,
    "base_model": "xlm-roberta-base",
    "training_data": "Custom Hebrew PII dataset",
    "detected_pii_entities": [
        "FIRST_NAME",
        "LAST_NAME",
        "STREET",
        "CITY",
        "PHONE_NUM",
        "EMAIL",
        "ID_NUM",
        "BANK_ACCOUNT_NUM",
        "CC_NUM",
        "CC_PROVIDER",
        "DATE",
        "POSTAL_CODE",
    ],
}


class PIIMaskingModel:
    """
    A class for masking PII in Hebrew text using the GolemPII-v1 model.
    """

    def __init__(self, model_name: str):
        """
        Initializes the PIIMaskingModel with the specified model name.

        Args:
            model_name: The name of the pre-trained model to use.
        """
        self.model_name = model_name
        hf_token = st.secrets["hf_token"]
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
        self.model = AutoModelForTokenClassification.from_pretrained(
            model_name, token=hf_token
        )
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(self.device)
        self.model.eval()

    def process_text(
        self, text: str
    ) -> Tuple[str, float, str, List[str], List[str], List[Dict]]:
        """
        Processes the input text and returns the masked text, processing time,
        colored text, tokens, predicted labels, and privacy masks.

        Args:
            text: The input text to process.

        Returns:
            A tuple containing:
                - masked_text: The text with PII masked.
                - processing_time: The time taken to process the text.
                - colored_text: The text with PII highlighted with colors.
                - tokens: The tokens of the input text.
                - predicted_labels: The predicted labels for each token.
                - privacy_masks: A list of dictionaries containing information about
                  the masked PII entities.
        """
        start_time = time.time()

        tokenized_inputs = self.tokenizer(
            text,
            truncation=True,
            padding=False,
            return_tensors="pt",
            return_offsets_mapping=True,
            add_special_tokens=True,
        )

        input_ids = tokenized_inputs.input_ids.to(self.device)
        attention_mask = tokenized_inputs.attention_mask.to(self.device)
        offset_mapping = tokenized_inputs["offset_mapping"][0].tolist()

        # Handle special tokens
        offset_mapping[0] = None  # <s> token
        offset_mapping[-1] = None  # </s> token

        with torch.no_grad():
            outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)

        predictions = outputs.logits.argmax(dim=-1).cpu().numpy()
        predicted_labels = [
            self.model.config.id2label[label_id] for label_id in predictions[0]
        ]
        tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])

        masked_text, colored_text, privacy_masks = self.mask_pii_in_sentence(
            tokens, predicted_labels, text, offset_mapping
        )
        processing_time = time.time() - start_time

        return (
            masked_text,
            processing_time,
            colored_text,
            tokens,
            predicted_labels,
            privacy_masks,
        )

    def _find_entity_span(
        self,
        i: int,
        labels: List[str],
        tokens: List[str],
        offset_mapping: List[Tuple[int, int]],
    ) -> Tuple[int, str, int]:
        """
        Finds the span of an entity starting at the given index.

        Args:
            i: The starting index of the entity.
            labels: The list of labels for each token.
            tokens: The list of tokens.
            offset_mapping: The offset mapping for each token.

        Returns:
            A tuple containing:
                - The index of the next token after the entity.
                - The type of the entity.
                - The end character offset of the entity.
        """
        current_entity = labels[i][2:] if labels[i].startswith("B-") else labels[i][2:]
        j = i + 1
        last_valid_end = offset_mapping[i][1] if offset_mapping[i] else None

        while j < len(tokens):
            if offset_mapping[j] is None:
                j += 1
                continue

            next_label = labels[j]

            if next_label.startswith("B-") and tokens[j].startswith(" "):
                break

            if next_label.startswith("I-") and next_label[2:] != current_entity:
                break

            if next_label.startswith("I-") and next_label[2:] == current_entity:
                last_valid_end = offset_mapping[j][1]
                j += 1
            elif next_label.startswith("B-") and not tokens[j].startswith(" "):
                last_valid_end = offset_mapping[j][1]
                j += 1
            else:
                break

        return j, current_entity, last_valid_end

    def mask_pii_in_sentence(
        self,
        tokens: List[str],
        labels: List[str],
        original_text: str,
        offset_mapping: List[Tuple[int, int]],
    ) -> Tuple[str, str, List[Dict]]:
        """
        Masks the PII entities in a sentence.

        Args:
            tokens: The list of tokens in the sentence.
            labels: The list of labels for each token.
            original_text: The original text of the sentence.
            offset_mapping: The offset mapping for each token.

        Returns:
            A tuple containing:
                - The masked text.
                - The colored text.
                - A list of dictionaries containing information about the masked
                  PII entities.
        """
        privacy_masks = []
        current_pos = 0
        masked_text_parts = []
        colored_text_parts = []

        i = 0
        while i < len(tokens):
            if offset_mapping[i] is None:
                i += 1
                continue

            current_label = labels[i]

            if current_label.startswith(("B-", "I-")):
                start_char = offset_mapping[i][0]
                next_pos, entity_type, last_valid_end = self._find_entity_span(
                    i, labels, tokens, offset_mapping
                )

                if current_pos < start_char:
                    text_before = original_text[current_pos:start_char]
                    masked_text_parts.append(text_before)
                    colored_text_parts.append(text_before)

                entity_value = original_text[start_char:last_valid_end]
                mask = self._get_mask_for_entity(entity_type)

                privacy_masks.append(
                    {
                        "label": entity_type,
                        "start": start_char,
                        "end": last_valid_end,
                        "value": entity_value,
                        "label_index": len(privacy_masks) + 1,
                    }
                )

                masked_text_parts.append(mask)
                color = ENTITY_COLORS.get(entity_type, "#CCCCCC")
                colored_text_parts.append(
                    f'<span style="background-color: {color}; color: black; padding: 2px; border-radius: 3px;">{mask}</span>'
                )

                current_pos = last_valid_end
                i = next_pos
            else:
                if offset_mapping[i] is not None:
                    start_char = offset_mapping[i][0]
                    end_char = offset_mapping[i][1]

                    if current_pos < end_char:
                        text_chunk = original_text[current_pos:end_char]
                        masked_text_parts.append(text_chunk)
                        colored_text_parts.append(text_chunk)
                        current_pos = end_char
                i += 1

        if current_pos < len(original_text):
            remaining_text = original_text[current_pos:]
            masked_text_parts.append(remaining_text)
            colored_text_parts.append(remaining_text)

        return ("".join(masked_text_parts), "".join(colored_text_parts), privacy_masks)

    def _get_mask_for_entity(self, entity_type: str) -> str:
        """
        Returns the mask for a given entity type.

        Args:
            entity_type: The type of the entity.

        Returns:
            The mask for the entity type.
        """
        return {
            "PHONE_NUM": "[讟诇驻讜谉]",
            "ID_NUM": "[转.讝]",
            "CC_NUM": "[讻专讟讬住 讗砖专讗讬]",
            "BANK_ACCOUNT_NUM": "[讞砖讘讜谉 讘谞拽]",
            "FIRST_NAME": "[砖诐 驻专讟讬]",
            "LAST_NAME": "[砖诐 诪砖驻讞讛]",
            "CITY": "[注讬专]",
            "STREET": "[专讞讜讘]",
            "POSTAL_CODE": "[诪讬拽讜讚]",
            "EMAIL": "[讗讬诪讬讬诇]",
            "DATE": "[转讗专讬讱]",
            "CC_PROVIDER": "[住驻拽 讻专讟讬住 讗砖专讗讬]",
            "BANK": "[讘谞拽]",
        }.get(entity_type, f"[{entity_type}]")


def main():
    """
    The main function for the Streamlit application.
    """
    st.set_page_config(layout="wide")
    st.title("馃椏 GolemPII: Hebrew PII Masking Application 馃椏")

    st.markdown(
        """
    <style>
        .rtl { direction: rtl; text-align: right; }
        .entity-legend { padding: 5px; margin: 2px; border-radius: 3px; display: inline-block; }
        .masked-text {
            direction: rtl;
            text-align: right;
            line-height: 2;
            padding: 10px;
            background-color: #f6f8fa;
            border-radius: 5px;
            color: black;
            white-space: pre-wrap;
        }
        .main h3 {
            margin-bottom: 10px;
        }
        textarea {
            direction: rtl !important;
            text-align: right !important;
        }
        .stTextArea label {
            direction: ltr !important;
            text-align: left !important;
        }
    </style>
    """,
        unsafe_allow_html=True,
    )

    # Sidebar with model details
    st.sidebar.markdown(
        f"""
        <div>
            <h2>{MODEL_DETAILS['name']}</h2>
            <p>{MODEL_DETAILS['description']}</p>
            <h3>Supported PII Entities</h3>
            <ul>
                {" ".join([f'<li><span style="background-color: {ENTITY_COLORS.get(entity, "#CCCCCC")}; color: black; padding: 3px 5px; border-radius: 3px; margin-right: 5px;">{entity}</span></li>' for entity in MODEL_DETAILS['detected_pii_entities']])}
            </ul>
        </div>
    """,
        unsafe_allow_html=True,
    )

    text_input = st.text_area(
        "Enter text to mask (separate multiple texts with commas):",
        value="\n".join(EXAMPLE_SENTENCES),
        height=200,
    )

    show_json = st.checkbox("Show JSON Output", value=True)

    if st.button("Process Text"):
        texts = [text.strip() for text in text_input.split(",") if text.strip()]
        model = PIIMaskingModel(MODEL_NAME)

        for text in texts:
            st.markdown(
                '<h3 style="text-align: center;">Original Text</h3>',
                unsafe_allow_html=True,
            )
            st.markdown(f'<div class="rtl">{text}</div>', unsafe_allow_html=True)

            (
                masked_text,
                processing_time,
                colored_text,
                tokens,
                predicted_labels,
                privacy_masks,
            ) = model.process_text(text)

            st.markdown(
                '<h3 style="text-align: center;">Masked Text</h3>',
                unsafe_allow_html=True,
            )
            st.markdown(
                f'<div class="masked-text">{colored_text}</div>', unsafe_allow_html=True
            )

            st.markdown(f"Processing Time: {processing_time:.3f} seconds")

            if show_json:
                st.json(
                    {
                        "original": text,
                        "masked": masked_text,
                        "processing_time": processing_time,
                        "tokens": tokens,
                        "token_classes": predicted_labels,
                        "privacy_mask": privacy_masks,
                        "span_labels": [
                            [m["start"], m["end"], m["label"]] for m in privacy_masks
                        ],
                    }
                )

            st.markdown("---")


if __name__ == "__main__":
    main()