Spaces:
Sleeping
Sleeping
import gradio as gr | |
import groq | |
import os | |
import tempfile | |
import uuid | |
from dotenv import load_dotenv | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceEmbeddings | |
import fitz # PyMuPDF | |
import base64 | |
from PIL import Image | |
import io | |
# Load environment variables | |
load_dotenv() | |
client = groq.Client(api_key=os.getenv("GROQ_LEGAL_API_KEY")) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
# Directory to store FAISS indexes | |
FAISS_INDEX_DIR = "faiss_indexes_tech" | |
if not os.path.exists(FAISS_INDEX_DIR): | |
os.makedirs(FAISS_INDEX_DIR) | |
# Dictionary to store user-specific vectorstores | |
user_vectorstores = {} | |
# Custom CSS for Tech theme | |
custom_css = """ | |
:root { | |
--primary-color: #008080; /* Teal */ | |
--secondary-color: #006666; /* Dark Teal */ | |
--light-background: #E0FFFF; /* Light Cyan */ | |
--dark-text: #333333; | |
--white: #FFFFFF; | |
--border-color: #E5E7EB; | |
} | |
body { background-color: var(--light-background); font-family: 'Inter', sans-serif; } | |
.container { max-width: 1200px !important; margin: 0 auto !important; padding: 10px; } | |
.header { background-color: var(--white); border-bottom: 2px solid var(--border-color); padding: 15px 0; margin-bottom: 20px; border-radius: 12px 12px 0 0; box-shadow: 0 2px 4px rgba(0,0,0,0.05); } | |
.header-title { color: var(--secondary-color); font-size: 1.8rem; font-weight: 700; text-align: center; } | |
.header-subtitle { color: var(--dark-text); font-size: 1rem; text-align: center; margin-top: 5px; } | |
.chat-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; min-height: 500px; } | |
.message-user { background-color: var(--primary-color) !important; color: var(--white) !important; border-radius: 18px 18px 4px 18px !important; padding: 12px 16px !important; margin-left: auto !important; max-width: 80% !important; } | |
.message-bot { background-color: #F0F0F0 !important; color: var(--dark-text) !important; border-radius: 18px 18px 18px 4px !important; padding: 12px 16px !important; margin-right: auto !important; max-width: 80% !important; } | |
.input-area { background-color: var(--white) !important; border-top: 1px solid var(--border-color) !important; padding: 12px !important; border-radius: 0 0 12px 12px !important; } | |
.input-box { border: 1px solid var(--border-color) !important; border-radius: 24px !important; padding: 12px 16px !important; box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; } | |
.send-btn { background-color: var(--secondary-color) !important; border-radius: 24px !important; color: var(--white) !important; padding: 10px 20px !important; font-weight: 500 !important; } | |
.clear-btn { background-color: #F0F0F0 !important; border: 1px solid var(--border-color) !important; border-radius: 24px !important; color: var(--dark-text) !important; padding: 8px 16px !important; font-weight: 500 !important; } | |
.pdf-viewer-container { border-radius: 12px !important; box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important; background-color: var(--white) !important; border: 1px solid var(--border-color) !important; padding: 20px; } | |
.pdf-viewer-image { max-width: 100%; height: auto; border: 1px solid var(--border-color); border-radius: 12px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); } | |
.stats-box { background-color: #E0F0F0; padding: 10px; border-radius: 8px; margin-top: 10px; } | |
""" | |
# Function to process PDF files (unchanged) | |
def process_pdf(pdf_file): | |
if pdf_file is None: | |
return None, "No file uploaded", {"page_images": [], "total_pages": 0, "total_words": 0} | |
try: | |
session_id = str(uuid.uuid4()) | |
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file: | |
temp_file.write(pdf_file) | |
pdf_path = temp_file.name | |
doc = fitz.open(pdf_path) | |
texts = [page.get_text() for page in doc] | |
page_images = [] | |
for page in doc: | |
pix = page.get_pixmap() | |
img_bytes = pix.tobytes("png") | |
img_base64 = base64.b64encode(img_bytes).decode("utf-8") | |
page_images.append(img_base64) | |
total_pages = len(doc) | |
total_words = sum(len(text.split()) for text in texts) | |
doc.close() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = text_splitter.create_documents(texts) | |
vectorstore = FAISS.from_documents(chunks, embeddings) | |
index_path = os.path.join(FAISS_INDEX_DIR, session_id) | |
vectorstore.save_local(index_path) | |
user_vectorstores[session_id] = vectorstore | |
os.unlink(pdf_path) | |
pdf_state = {"page_images": page_images, "total_pages": total_pages, "total_words": total_words} | |
return session_id, f"β Successfully processed {len(chunks)} text chunks from your PDF", pdf_state | |
except Exception as e: | |
if "pdf_path" in locals() and os.path.exists(pdf_path): | |
os.unlink(pdf_path) | |
return None, f"Error processing PDF: {str(e)}", {"page_images": [], "total_pages": 0, "total_words": 0} | |
# Function to generate chatbot responses with Tech theme | |
def generate_response(message, session_id, model_name, history): | |
if not message: | |
return history | |
try: | |
context = "" | |
if session_id and session_id in user_vectorstores: | |
vectorstore = user_vectorstores[session_id] | |
docs = vectorstore.similarity_search(message, k=3) | |
if docs: | |
context = "\n\nRelevant information from uploaded PDF:\n" + "\n".join(f"- {doc.page_content}" for doc in docs) | |
system_prompt = "You are a technical assistant specializing in analyzing tech manuals, whitepapers, and documentation." | |
if context: | |
system_prompt += " Use the following context to answer the question if relevant: " + context | |
completion = client.chat.completions.create( | |
model=model_name, | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": message} | |
], | |
temperature=0.7, | |
max_tokens=1024 | |
) | |
response = completion.choices[0].message.content | |
history.append((message, response)) | |
return history | |
except Exception as e: | |
history.append((message, f"Error generating response: {str(e)}")) | |
return history | |
# Functions to update PDF viewer (unchanged) | |
def update_pdf_viewer(pdf_state): | |
if not pdf_state["total_pages"]: | |
return 0, None, "No PDF uploaded yet" | |
try: | |
img_data = base64.b64decode(pdf_state["page_images"][0]) | |
img = Image.open(io.BytesIO(img_data)) | |
return pdf_state["total_pages"], img, f"**Total Pages:** {pdf_state['total_pages']}\n**Total Words:** {pdf_state['total_words']}" | |
except Exception as e: | |
print(f"Error decoding image: {e}") | |
return 0, None, "Error displaying PDF" | |
def update_image(page_num, pdf_state): | |
if not pdf_state["total_pages"] or page_num < 1 or page_num > pdf_state["total_pages"]: | |
return None | |
try: | |
img_data = base64.b64decode(pdf_state["page_images"][page_num - 1]) | |
img = Image.open(io.BytesIO(img_data)) | |
return img | |
except Exception as e: | |
print(f"Error decoding image: {e}") | |
return None | |
# Gradio interface | |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: | |
current_session_id = gr.State(None) | |
pdf_state = gr.State({"page_images": [], "total_pages": 0, "total_words": 0}) | |
gr.HTML(""" | |
<div class="header"> | |
<div class="header-title">Tech-Vision</div> | |
<div class="header-subtitle">Analyze technical documents with Groq's LLM API.</div> | |
</div> | |
""") | |
with gr.Row(elem_classes="container"): | |
with gr.Column(scale=1, min_width=300): | |
pdf_file = gr.File(label="Upload PDF Document", file_types=[".pdf"], type="binary") | |
upload_button = gr.Button("Process PDF", variant="primary") | |
pdf_status = gr.Markdown("No PDF uploaded yet") | |
model_dropdown = gr.Dropdown( | |
choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"], | |
value="llama3-70b-8192", | |
label="Select Groq Model" | |
) | |
with gr.Column(scale=2, min_width=600): | |
with gr.Tabs(): | |
with gr.TabItem("PDF Viewer"): | |
with gr.Column(elem_classes="pdf-viewer-container"): | |
page_slider = gr.Slider(minimum=1, maximum=1, step=1, label="Page Number", value=1) | |
pdf_image = gr.Image(label="PDF Page", type="pil", elem_classes="pdf-viewer-image") | |
stats_display = gr.Markdown("No PDF uploaded yet", elem_classes="stats-box") | |
with gr.Row(elem_classes="container"): | |
with gr.Column(scale=2, min_width=600): | |
chatbot = gr.Chatbot(height=500, bubble_full_width=False, show_copy_button=True, elem_classes="chat-container") | |
with gr.Row(): | |
msg = gr.Textbox(show_label=False, placeholder="Ask about your technical document...", scale=5) | |
send_btn = gr.Button("Send", scale=1) | |
clear_btn = gr.Button("Clear Conversation") | |
# Event Handlers (unchanged) | |
upload_button.click( | |
process_pdf, | |
inputs=[pdf_file], | |
outputs=[current_session_id, pdf_status, pdf_state] | |
).then( | |
update_pdf_viewer, | |
inputs=[pdf_state], | |
outputs=[page_slider, pdf_image, stats_display] | |
) | |
msg.submit( | |
generate_response, | |
inputs=[msg, current_session_id, model_dropdown, chatbot], | |
outputs=[chatbot] | |
).then(lambda: "", None, [msg]) | |
send_btn.click( | |
generate_response, | |
inputs=[msg, current_session_id, model_dropdown, chatbot], | |
outputs=[chatbot] | |
).then(lambda: "", None, [msg]) | |
clear_btn.click( | |
lambda: ([], None, "No PDF uploaded yet", {"page_images": [], "total_pages": 0, "total_words": 0}, 0, None, "No PDF uploaded yet"), | |
None, | |
[chatbot, current_session_id, pdf_status, pdf_state, page_slider, pdf_image, stats_display] | |
) | |
page_slider.change( | |
update_image, | |
inputs=[page_slider, pdf_state], | |
outputs=[pdf_image] | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() |