File size: 3,111 Bytes
48a29d5
4816b42
 
8c76e53
 
 
48a29d5
 
4816b42
a1e4869
 
48a29d5
 
 
 
7edbcbc
 
0e1dacf
4816b42
 
 
 
 
48a29d5
0e1dacf
4816b42
48a29d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b25a8be
 
 
 
c3125e8
b25a8be
 
c3125e8
b25a8be
c3125e8
b25a8be
 
 
 
 
 
 
 
 
 
 
 
874cf23
 
b25a8be
 
874cf23
 
 
 
 
b25a8be
874cf23
 
b25a8be
874cf23
 
b25a8be
874cf23
 
 
 
 
 
 
 
 
c3125e8
48a29d5
 
 
c3125e8
48a29d5
 
c3125e8
48a29d5
 
 
c3125e8
874cf23
48a29d5
 
874cf23
48a29d5
 
 
 
 
 
874cf23
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio
# from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
import os

os.getenv("HF_TOKEN")

# Initialize the Hugging Face model
# model = pipeline(model='google/flan-t5-base')
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b", use_auth_token=True)
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", use_auth_token=True)


# Define the chatbot function
def chatbot(input_text):

    prompt = f"Give the answer of the given input in context from the bhagwat geeta. give suggestions to user which are based upon the meanings of shlok in bhagwat geeta, input = {input_text}"
    # Generate a response from the Hugging Face model
    # response = model(prompt, max_length=250, do_sample=True)[0]['generated_text'].strip()
    input_text = "Write me a poem about Machine Learning."
    input_ids = tokenizer(prompt, return_tensors="pt")

    outputs = model.generate(**input_ids)
  
    # Return the bot response
    return outputs

# Define the Gradio interface
gradio_interface = gradio.Interface(
    fn=chatbot,
    inputs='text',
    outputs='text',
    title='Chatbot',
    description='A weird chatbot conversations experience.',
    examples=[
        ['Hi, how are you?']
    ]
)

# Launch the Gradio interface
gradio_interface.launch()





# from dotenv import load_dotenv
# from langchain import HuggingFaceHub, LLMChain
# from langchain import PromptTemplates
# import gradio

# load_dotenv()
# os.getenv('HF_API')

# hub_llm = HuggingFaceHub(repo_id='facebook/blenderbot-400M-distill')

# prompt = prompt_templates(
#     input_variable = ["question"],
#     template = "Answer is: {question}"
# )

# hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True)





# Sample code for AI language model interaction
# from transformers import GPT2Tokenizer, GPT2LMHeadModel
# import gradio


# def simptok(data):
#     # Load pre-trained model and tokenizer (using the transformers library)
#     model_name = "gpt2"
#     tokenizer = GPT2Tokenizer.from_pretrained(model_name)
#     model = GPT2LMHeadModel.from_pretrained(model_name)
    
#     # User input
#     user_input = data
    
#     # Tokenize input
#     input_ids = tokenizer.encode(user_input, return_tensors="pt")
    
#     # Generate response
#     output = model.generate(input_ids, max_length=50, num_return_sequences=1)
#     response = tokenizer.decode(output[0], skip_special_tokens=True)
#     return response


# def responsenew(data):
#     return simptok(data)


# from hugchat import hugchat
# import gradio as gr
# import time

# # Create a chatbot connection
# chatbot = hugchat.ChatBot(cookie_path="cookies.json")

# # New a conversation (ignore error)
# id = chatbot.new_conversation()
# chatbot.change_conversation(id)


# def get_answer(data):
#     return chatbot.chat(data)

# gradio_interface = gr.Interface(
#   fn = get_answer,
#   inputs = "text",
#   outputs = "text"
# )
# gradio_interface.launch()

# gradio_interface = gradio.Interface(
#   fn = responsenew,
#   inputs = "text",
#   outputs = "text"
# )
# gradio_interface.launch()