File size: 9,303 Bytes
74e148e 2ebd0eb 74e148e e784fb2 6014c01 a918d0a 2ebd0eb e784fb2 2ebd0eb e784fb2 74e148e 24bbe87 74e148e 2ebd0eb 74e148e 2ebd0eb 74e148e e784fb2 74e148e 2ebd0eb 74e148e e784fb2 74e148e e784fb2 566346f 74e148e 9ec9da6 74e148e e784fb2 74e148e 2ebd0eb 74e148e 2ebd0eb 74e148e e784fb2 74e148e 2ebd0eb 74e148e e784fb2 2ebd0eb e784fb2 74e148e 2ebd0eb 74e148e d51c492 74e148e c244c0c 74e148e c244c0c 74e148e 2ebd0eb 74e148e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
import numpy as np
from diffusers import StableDiffusionXLControlNetInpaintPipeline
from diffusers import StableDiffusionXLImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, StableDiffusionXLControlNetPipeline, ControlNetModel
from diffusers.utils import load_image
from diffusers.image_processor import IPAdapterMaskProcessor
import torch
import os
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import make_image_grid
from diffusers import DPMSolverSDEScheduler
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
processor_mask = IPAdapterMaskProcessor()
controlnets = [
ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0",variant="fp16",use_safetensors=True,torch_dtype=torch.float16
),
ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True,variant="fp16"
),
]
pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=[controlnets[0],controlnets[0]], use_safetensors=True, variant='fp16')
###pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe_CN.scheduler=DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)
pipe_CN.to("cuda")
state_dict, network_alphas = StableDiffusionXLControlNetPipeline.lora_state_dict('CreativesCombined/hb8_cases_dreambooth_lora_test_1_14', weight_name='pytorch_lora_weights.safetensors')
pipe_CN.load_lora_into_unet(state_dict, network_alphas, pipe_CN.unet, adapter_name='unet_cases')
pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder, adapter_name='text_cases')
pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder ,prefix='2', adapter_name='text_2_cases')
pipe_CN.set_adapters(["unet_cases","text_cases","text_2_cases"], adapter_weights=[1.0, 0.5,0.5])
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16")
refiner.to("cuda")
pipe_IN = StableDiffusionXLControlNetInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1",controlnet=controlnets, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe_IN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood')
pipe_IN.to("cuda")
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1]
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,seed=int):
###pro_encode = pipe_cn.encode_text(prompt)
###pro_encode = pipe_CN.encode_text(prompt)[2]
### function has no formats defined
scaff_dic={1:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_square_2.png",
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_noroof_square.png",
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_solo_square.png"},
2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_C.png",
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_C.png",
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_C_solo.png"},
3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_B.png",
'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_B.png",
'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_B_solo.png"}}
##############################load loras
###pipe_CN.fuse_lora()
output_height = 1024
output_width = 1024
mask1 = load_image(scaff_dic[scaffold]['mask1'])
masks = processor_mask.preprocess([mask1], height=output_height, width=output_width)
masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]
###ip_images init
###ip_img_1 = load_image(r"C:\Users\AntonioEsparzaGlisma\PycharmProjects\hB8\Cases\a-place-to_210930_HAY_A-PLACE-TO_091-768x1024.png")
###ip_images = [[ip_img_1]]
###pipe_CN.set_ip_adapter_scale([[0.7]])
n_steps = num_inference_steps
###precomputed depth image
depth_image = load_image(scaff_dic[scaffold]['depth_image'])
canny_image = load_image(scaff_dic[scaffold]['canny_image'])
masked_depth=make_inpaint_condition(depth_image,mask1)
images_CN = [depth_image, canny_image]
prompt1 = 'A frontpage still-life photograph, an 8-foot wooden crate, '+ prompt +' in the style of hb8 interior architecture'
neg1 = 'text,watermark'
prompt2 = 'Photorealistic rendering, of an OurHood privacy booth, with a silken oak frame, hickory stained melange polyester fabric, windows'
neg2 = 'curtains, pillows'
generator = torch.manual_seed(seed)
results = pipe_CN(
prompt=prompt1,
###ip_adapter_image=ip_images,
negative_prompt=neg1,
num_inference_steps=n_steps,
num_images_per_prompt=1,
generator=generator,
denoising_end=0.9,
image=[depth_image,masked_depth],
output_type="latent",
control_guidance_start=[0.0,0.5],
control_guidance_end=[0.5,1.0],
controlnet_conditioning_scale=[0.5,1.0],
).images[0]
image = refiner(
prompt=prompt1,
num_inference_steps=n_steps,
denoising_start=0.9,
image=results).images[0]
image = pipe_IN(
prompt=prompt2,
negative_prompt=neg2,
image=image,
mask_image=mask1,
num_inference_steps=65,
strength=1.0,
control_guidance_end=[0.9,0.9],
controlnet_conditioning_scale=[0.35, 0.65],
control_image=images_CN,
generator=generator,
).images[0]
return image
"""
image = refiner(
prompt=prompt,
num_inference_steps=40,
denoising_start=0.8,
image=image,
).images[0]
"""
#@spaces.GPU #[uncomment to use ZeroGPU]
examples = [
"in a British museum, pavillion, masonry, high-tables and chairs",
"in a high ceilinged atrium, glass front, plantwalls, concrete floor, furniture, golden hour",
"in a colorful open office environment",
" in a Nordic atrium environment"]
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# HB8-Ourhood inference test
""")
with gr.Row():
prompt = gr.Text(
label="Setting prompt",
show_label=False,
max_lines=1,
placeholder="Where do you want to show the Ourhood pod?",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
perspective = gr.Slider(
label="perspective",
minimum=1,
maximum=3,
step=1,
value=1,
)
seed = gr.Slider(
label="tracking number (seed)",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=35,
maximum=50,
step=1,
value=35, #Replace with defaults that work for your model
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = ourhood_inference,
inputs = [prompt, num_inference_steps, perspective,seed],
outputs = [result]
)
demo.queue().launch()
|