File size: 9,303 Bytes
74e148e
2ebd0eb
74e148e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e784fb2
 
6014c01
a918d0a
2ebd0eb
e784fb2
 
 
 
 
2ebd0eb
 
 
 
 
 
 
 
e784fb2
 
 
 
 
 
 
 
 
 
74e148e
 
 
 
 
 
 
 
24bbe87
 
 
 
 
 
 
 
 
74e148e
 
2ebd0eb
74e148e
 
 
2ebd0eb
74e148e
 
 
 
 
 
 
e784fb2
 
 
74e148e
 
 
2ebd0eb
74e148e
 
 
 
e784fb2
 
 
74e148e
 
e784fb2
566346f
74e148e
 
 
9ec9da6
74e148e
 
 
 
 
 
 
 
e784fb2
 
74e148e
2ebd0eb
 
 
74e148e
 
 
2ebd0eb
 
74e148e
 
 
 
e784fb2
74e148e
 
 
2ebd0eb
 
74e148e
 
 
 
 
 
e784fb2
2ebd0eb
 
e784fb2
74e148e
 
 
 
2ebd0eb
 
74e148e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d51c492
 
 
 
74e148e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c244c0c
74e148e
 
c244c0c
74e148e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebd0eb
74e148e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import numpy as np
from diffusers import StableDiffusionXLControlNetInpaintPipeline
from diffusers import StableDiffusionXLImg2ImgPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, StableDiffusionXLControlNetPipeline, ControlNetModel
from diffusers.utils import load_image
from diffusers.image_processor import IPAdapterMaskProcessor
import torch
import os
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import make_image_grid
from diffusers import DPMSolverSDEScheduler


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

processor_mask = IPAdapterMaskProcessor()
controlnets = [
    ControlNetModel.from_pretrained(
        "diffusers/controlnet-depth-sdxl-1.0",variant="fp16",use_safetensors=True,torch_dtype=torch.float16
    ),
    ControlNetModel.from_pretrained(
        "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16, use_safetensors=True,variant="fp16"
    ),
]

pipe_CN = StableDiffusionXLControlNetPipeline.from_pretrained("SG161222/RealVisXL_V5.0", torch_dtype=torch.float16,controlnet=[controlnets[0],controlnets[0]], use_safetensors=True, variant='fp16')
###pipe_CN.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16)
pipe_CN.scheduler=DPMSolverSDEScheduler.from_pretrained("SG161222/RealVisXL_V5.0",subfolder="scheduler",use_karras_sigmas=True)

pipe_CN.to("cuda")
state_dict, network_alphas = StableDiffusionXLControlNetPipeline.lora_state_dict('CreativesCombined/hb8_cases_dreambooth_lora_test_1_14', weight_name='pytorch_lora_weights.safetensors')
pipe_CN.load_lora_into_unet(state_dict, network_alphas, pipe_CN.unet, adapter_name='unet_cases')
pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder, adapter_name='text_cases')
pipe_CN.load_lora_into_text_encoder(state_dict, network_alphas, pipe_CN.text_encoder ,prefix='2', adapter_name='text_2_cases')
pipe_CN.set_adapters(["unet_cases","text_cases","text_2_cases"], adapter_weights=[1.0, 0.5,0.5])

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0",text_encoder_2=pipe_CN.text_encoder_2,vae=pipe_CN.vae,torch_dtype=torch.float16,use_safetensors=True,variant="fp16")
refiner.to("cuda")

pipe_IN = StableDiffusionXLControlNetInpaintPipeline.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1",controlnet=controlnets, torch_dtype=torch.float16, variant="fp16").to("cuda")
pipe_IN.load_lora_weights('Tonioesparza/ourhood_training_dreambooth_lora_2_0', weight_name='pytorch_lora_weights.safetensors',adapter_name='ourhood')
pipe_IN.to("cuda")

def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
    assert image.shape[0:1] == image_mask.shape[0:1]
    image[image_mask > 0.5] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image

def ourhood_inference(prompt=str,num_inference_steps=int,scaffold=int,seed=int):

###pro_encode = pipe_cn.encode_text(prompt)

    ###pro_encode = pipe_CN.encode_text(prompt)[2]


### function has no formats defined

    scaff_dic={1:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_square_2.png",
                  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_noroof_square.png",
                  'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_depth_solo_square.png"},
               2:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_C.png",
                  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_C.png",
                  'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_C_solo.png"},
               3:{'mask1':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/mask_in_B.png",
                  'depth_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/depth_B.png",
                  'canny_image':"https://huggingface.co/Tonioesparza/ourhood_training_dreambooth_lora_2_0/resolve/main/canny_B_solo.png"}}


    

    ##############################load loras

    
    ###pipe_CN.fuse_lora()

    output_height = 1024
    output_width = 1024
    mask1 = load_image(scaff_dic[scaffold]['mask1'])
    masks = processor_mask.preprocess([mask1], height=output_height, width=output_width)
    masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]

    
    
    ###ip_images init
    ###ip_img_1 = load_image(r"C:\Users\AntonioEsparzaGlisma\PycharmProjects\hB8\Cases\a-place-to_210930_HAY_A-PLACE-TO_091-768x1024.png")
    ###ip_images = [[ip_img_1]]
    ###pipe_CN.set_ip_adapter_scale([[0.7]])
    n_steps = num_inference_steps
    ###precomputed depth image
    depth_image = load_image(scaff_dic[scaffold]['depth_image'])
    canny_image = load_image(scaff_dic[scaffold]['canny_image'])

    masked_depth=make_inpaint_condition(depth_image,mask1)
    
    images_CN = [depth_image, canny_image]

    
    prompt1 = 'A frontpage still-life photograph, an 8-foot wooden crate, '+ prompt +' in the style of hb8 interior architecture'
    neg1 = 'text,watermark'
    prompt2 = 'Photorealistic rendering, of an OurHood privacy booth, with a silken oak frame, hickory stained melange polyester fabric, windows'
    neg2 = 'curtains, pillows'
    generator = torch.manual_seed(seed)

    results = pipe_CN(
            prompt=prompt1,
            ###ip_adapter_image=ip_images,
            negative_prompt=neg1,
            num_inference_steps=n_steps,
            num_images_per_prompt=1,
            generator=generator,
            denoising_end=0.9,
            image=[depth_image,masked_depth],
            output_type="latent",
            control_guidance_start=[0.0,0.5],
            control_guidance_end=[0.5,1.0],
            controlnet_conditioning_scale=[0.5,1.0],
        ).images[0]





    image = refiner(
        prompt=prompt1,
        num_inference_steps=n_steps,
        denoising_start=0.9,
        image=results).images[0]





    image = pipe_IN(
            prompt=prompt2,
            negative_prompt=neg2,
            image=image,
            mask_image=mask1,
            num_inference_steps=65,
            strength=1.0,
            control_guidance_end=[0.9,0.9],
            controlnet_conditioning_scale=[0.35, 0.65],
            control_image=images_CN,
            generator=generator,
        ).images[0]




    return image




"""
image = refiner(
    prompt=prompt,
    num_inference_steps=40,
    denoising_start=0.8,
    image=image,
).images[0]
"""

#@spaces.GPU #[uncomment to use ZeroGPU]

examples = [
    "in a British museum, pavillion, masonry, high-tables and chairs",
    "in a high ceilinged atrium, glass front, plantwalls, concrete floor, furniture, golden hour",
    "in a colorful open office environment",
    " in a Nordic atrium environment"]

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # HB8-Ourhood inference test
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Setting prompt",
                show_label=False,
                max_lines=1,
                placeholder="Where do you want to show the Ourhood pod?",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)

        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            perspective = gr.Slider(
                label="perspective",
                minimum=1,
                maximum=3,
                step=1,
                value=1,
            )
            
            seed = gr.Slider(
                label="tracking number (seed)",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            

            with gr.Row():

                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=35,
                    maximum=50,
                    step=1,
                    value=35, #Replace with defaults that work for your model
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = ourhood_inference,
        inputs = [prompt, num_inference_steps, perspective,seed],
        outputs = [result]
    )

demo.queue().launch()