File size: 3,616 Bytes
ddf7acc
b896977
 
 
 
 
 
 
300310b
b896977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300310b
b896977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300310b
b896977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf7acc
b896977
e638a74
b896977
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import gradio as gr
import pytesseract
from PIL import Image
import pdf2image
import tempfile
import os
import cv2
import numpy as np

# You may need to set the path to tesseract executable if it's not in PATH
# pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'  # For Windows
# For Linux/Mac, ensure Tesseract is installed

def preprocess_image(img):
    """Preprocess image to improve OCR accuracy for handwritten text"""
    # Convert to grayscale
    gray = cv2.cvtColor(np.array(img), cv2.COLOR_BGR2GRAY)
    
    # Apply thresholding
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
    
    # Noise removal
    kernel = np.ones((1, 1), np.uint8)
    binary = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel)
    binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel)
    
    # Invert back
    binary = 255 - binary
    
    return Image.fromarray(binary)

def extract_text_from_image(img):
    """Extract text from an image using OCR"""
    # Preprocess for better handwriting recognition
    processed_img = preprocess_image(img)
    
    # Use pytesseract with configuration optimized for handwritten text
    custom_config = r'--oem 3 --psm 6 -l eng -c tessedit_char_whitelist="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,!?@#$%^&*()-+=_:;\'\" "'
    text = pytesseract.image_to_string(processed_img, config=custom_config)
    
    return text.strip()

def extract_text_from_pdf(pdf_path):
    """Extract text from all pages of a PDF file"""
    # Convert PDF to images
    with tempfile.TemporaryDirectory() as path:
        images = pdf2image.convert_from_path(pdf_path, output_folder=path)
        
        # Extract text from each page
        full_text = []
        for img in images:
            text = extract_text_from_image(img)
            full_text.append(text)
        
        return "\n\n--- Page Break ---\n\n".join(full_text)

def process_file(file):
    """Process the uploaded file (PDF or image)"""
    if file is None:
        return "No file uploaded. Please upload an image or PDF file."
    
    file_extension = os.path.splitext(file.name)[1].lower()
    
    if file_extension == ".pdf":
        # Process PDF
        return extract_text_from_pdf(file.name)
    elif file_extension in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif"]:
        # Process Image
        img = Image.open(file.name)
        return extract_text_from_image(img)
    else:
        return "Unsupported file format. Please upload a PDF or image file (JPG, PNG, BMP, TIFF)."

# Create Gradio interface
with gr.Blocks(title="Handwritten Text OCR Extractor") as app:
    gr.Markdown("# Handwritten Text OCR Extraction Tool")
    gr.Markdown("Upload an image or PDF containing handwritten text to extract the content.")
    
    with gr.Row():
        with gr.Column():
            file_input = gr.File(label="Upload Image or PDF", file_types=["image", "pdf"])
            extract_button = gr.Button("Extract Text")
        
        with gr.Column():
            text_output = gr.Textbox(label="Extracted Text", lines=10, placeholder="Extracted text will appear here...")
    
    extract_button.click(fn=process_file, inputs=[file_input], outputs=[text_output])
    
    gr.Markdown("### Notes:")
    gr.Markdown("- For best results, ensure the handwriting is clear and the image is well-lit")
    gr.Markdown("- The system works best with dark text on light background")
    gr.Markdown("- Multiple page PDFs will show page breaks in the output")

# Launch the app
if __name__ == "__main__":
    app.launch()