Spaces:
Sleeping
Sleeping
import torch | |
import pytesseract | |
import cv2 | |
import json | |
import xml.etree.ElementTree as ET | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from layoutparser import Detectron2LayoutModel | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
from stable_baselines3 import PPO | |
# Load OCR model | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
def preprocess_image(image_path): | |
image = cv2.imread(image_path) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
return gray | |
def extract_text(image_path): | |
image = preprocess_image(image_path) | |
text = pytesseract.image_to_string(image) | |
return text | |
def analyze_layout(image_path): | |
model = Detectron2LayoutModel("lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config") | |
image = cv2.imread(image_path) | |
layout = model.detect(image) | |
return layout | |
def generate_machine_readable_format(text, format_type='json'): | |
if format_type == 'json': | |
return json.dumps({"content": text}) | |
elif format_type == 'xml': | |
root = ET.Element("Document") | |
content = ET.SubElement(root, "Content") | |
content.text = text | |
return ET.tostring(root, encoding='unicode') | |
return text | |
# Generative AI Model | |
GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2") | |
GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
def generate_structured_output(text): | |
inputs = GPT2_tokenizer.encode(text, return_tensors="pt") | |
outputs = GPT2_model.generate(inputs, max_length=500) | |
return GPT2_tokenizer.decode(outputs[0]) | |
# Reinforcement Learning for Optimization | |
class DocumentConversionEnv: | |
def __init__(self): | |
self.state = None | |
def reset(self): | |
self.state = "start" | |
return self.state | |
def step(self, action): | |
reward = 1 if action == "optimize" else -1 | |
self.state = "optimized" if action == "optimize" else "start" | |
return self.state, reward, False, {} | |
env = DocumentConversionEnv() | |
rl_model = PPO("MlpPolicy", env, verbose=1) | |
rl_model.learn(total_timesteps=1000) | |
def convert_document(image_path, output_format='json'): | |
text = extract_text(image_path) | |
layout = analyze_layout(image_path) | |
structured_output = generate_structured_output(text) | |
machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format) | |
return machine_readable_output | |
# Example usage | |
document_path = "sample_document.png" | |
converted_document = convert_document(document_path, output_format='json') | |
print(converted_document) | |