DeepDiveDev's picture
Create app.py
300310b verified
raw
history blame
2.65 kB
import torch
import pytesseract
import cv2
import json
import xml.etree.ElementTree as ET
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from layoutparser import Detectron2LayoutModel
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from stable_baselines3 import PPO
# Load OCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
def preprocess_image(image_path):
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return gray
def extract_text(image_path):
image = preprocess_image(image_path)
text = pytesseract.image_to_string(image)
return text
def analyze_layout(image_path):
model = Detectron2LayoutModel("lp://PubLayNet/mask_rcnn_X_101_32x8d_FPN_3x/config")
image = cv2.imread(image_path)
layout = model.detect(image)
return layout
def generate_machine_readable_format(text, format_type='json'):
if format_type == 'json':
return json.dumps({"content": text})
elif format_type == 'xml':
root = ET.Element("Document")
content = ET.SubElement(root, "Content")
content.text = text
return ET.tostring(root, encoding='unicode')
return text
# Generative AI Model
GPT2_model = GPT2LMHeadModel.from_pretrained("gpt2")
GPT2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
def generate_structured_output(text):
inputs = GPT2_tokenizer.encode(text, return_tensors="pt")
outputs = GPT2_model.generate(inputs, max_length=500)
return GPT2_tokenizer.decode(outputs[0])
# Reinforcement Learning for Optimization
class DocumentConversionEnv:
def __init__(self):
self.state = None
def reset(self):
self.state = "start"
return self.state
def step(self, action):
reward = 1 if action == "optimize" else -1
self.state = "optimized" if action == "optimize" else "start"
return self.state, reward, False, {}
env = DocumentConversionEnv()
rl_model = PPO("MlpPolicy", env, verbose=1)
rl_model.learn(total_timesteps=1000)
def convert_document(image_path, output_format='json'):
text = extract_text(image_path)
layout = analyze_layout(image_path)
structured_output = generate_structured_output(text)
machine_readable_output = generate_machine_readable_format(structured_output, format_type=output_format)
return machine_readable_output
# Example usage
document_path = "sample_document.png"
converted_document = convert_document(document_path, output_format='json')
print(converted_document)