|
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool |
|
import datetime |
|
import requests |
|
import pytz |
|
import yaml |
|
import yfinance as yf |
|
from ta.momentum import RSIIndicator, StochasticOscillator |
|
from ta.trend import MACD |
|
from ta.volume import volume_weighted_average_price |
|
from tools.final_answer import FinalAnswerTool |
|
|
|
|
|
from Gradio_UI import GradioUI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@tool |
|
def get_stock_price(ticker: str) -> Union[Dict, str]: |
|
""" |
|
A tool that fetches the historical stock price data and technical indicators for a given ticker. |
|
Args: |
|
ticker: A string representing a stocke ticker name (e.g AAPL) |
|
""" |
|
|
|
try: |
|
data = yf.download( |
|
ticker, |
|
start=dt.datetime.now() - dt.timedelta(weeks=24 * 3), |
|
end=dt.datetime.now(), |
|
interval="1wk", |
|
) |
|
df = data.copy() |
|
data.reset_index(inplace=True) |
|
data.Date = data.Date.astype(str) |
|
|
|
indicators = {} |
|
|
|
rsi_series = RSIIndicator(df["Close"], window=14).rsi().iloc[-12:] |
|
indicators["RSI"] = { |
|
date.strftime("%Y-%m-%d"): int(value) |
|
for date, value in rsi_series.dropna().to_dict().items() |
|
} |
|
|
|
stochastic_series = ( |
|
StochasticOscillator(df["High"], df["Low"], df["Close"], window=14) |
|
.stoch() |
|
.iloc[-12:] |
|
) |
|
indicators["Stochastic Oscillator"] = { |
|
date.strftime("%Y-%m-%d"): int(value) |
|
for date, value in stochastic_series.dropna().to_dict().items() |
|
} |
|
|
|
macd = MACD(df["Close"]) |
|
macd_series = macd.macd().iloc[-12:] |
|
indicators["MACD"] = { |
|
date.strftime("%Y-%m-%d"): int(value) |
|
for date, value in macd_series.to_dict().items() |
|
} |
|
|
|
macd_signal_series = macd.macd_signal().iloc[-12:] |
|
indicators["MACD Signal"] = { |
|
date.strftime("%Y-%m-%d"): int(value) |
|
for date, value in macd_signal_series.to_dict().items() |
|
} |
|
|
|
vwap_series = volume_weighted_average_price( |
|
df["High"], df["Low"], df["Close"], df["Volume"] |
|
).iloc[-12:] |
|
indicators["vwap"] = { |
|
date.strftime("%Y-%m-%d"): int(value) |
|
for date, value in vwap_series.to_dict().items() |
|
} |
|
|
|
return {"stock_price": data.to_dict(orient="records"), "indicators": indicators} |
|
except Exception as e: |
|
return f"Error fetching price data: {str(e)}" |
|
|
|
@tool |
|
def get_current_time_in_timezone(timezone: str) -> str: |
|
"""A tool that fetches the current local time in a specified timezone. |
|
Args: |
|
timezone: A string representing a valid timezone (e.g., 'America/New_York'). |
|
""" |
|
try: |
|
|
|
tz = pytz.timezone(timezone) |
|
|
|
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") |
|
return f"The current local time in {timezone} is: {local_time}" |
|
except Exception as e: |
|
return f"Error fetching time for timezone '{timezone}': {str(e)}" |
|
|
|
|
|
final_answer = FinalAnswerTool() |
|
|
|
|
|
|
|
|
|
model = HfApiModel( |
|
max_tokens=2096, |
|
temperature=0.5, |
|
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', |
|
custom_role_conversions=None, |
|
) |
|
|
|
|
|
|
|
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) |
|
|
|
with open("prompts.yaml", 'r') as stream: |
|
prompt_templates = yaml.safe_load(stream) |
|
|
|
agent = CodeAgent( |
|
model=model, |
|
tools=[final_answer, get_stock_price], |
|
max_steps=6, |
|
verbosity_level=1, |
|
grammar=None, |
|
planning_interval=None, |
|
name=None, |
|
description=None, |
|
prompt_templates=prompt_templates |
|
) |
|
|
|
|
|
GradioUI(agent).launch() |