DeepSpaceMuse's picture
adds get_stock_price tool
63cd85f verified
raw
history blame
4.52 kB
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import yfinance as yf
from ta.momentum import RSIIndicator, StochasticOscillator
from ta.trend import MACD
from ta.volume import volume_weighted_average_price
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
# # Below is an example of a tool that does nothing. Amaze us with your creativity !
# @tool
# def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
# #Keep this format for the description / args / args description but feel free to modify the tool
# """A tool that does nothing yet
# Args:
# arg1: the first argument
# arg2: the second argument
# """
# return "What magic will you build ?"
@tool
def get_stock_price(ticker: str) -> Union[Dict, str]:
"""
A tool that fetches the historical stock price data and technical indicators for a given ticker.
Args:
ticker: A string representing a stocke ticker name (e.g AAPL)
"""
try:
data = yf.download(
ticker,
start=dt.datetime.now() - dt.timedelta(weeks=24 * 3),
end=dt.datetime.now(),
interval="1wk",
)
df = data.copy()
data.reset_index(inplace=True)
data.Date = data.Date.astype(str)
indicators = {}
rsi_series = RSIIndicator(df["Close"], window=14).rsi().iloc[-12:]
indicators["RSI"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in rsi_series.dropna().to_dict().items()
}
stochastic_series = (
StochasticOscillator(df["High"], df["Low"], df["Close"], window=14)
.stoch()
.iloc[-12:]
)
indicators["Stochastic Oscillator"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in stochastic_series.dropna().to_dict().items()
}
macd = MACD(df["Close"])
macd_series = macd.macd().iloc[-12:]
indicators["MACD"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in macd_series.to_dict().items()
}
macd_signal_series = macd.macd_signal().iloc[-12:]
indicators["MACD Signal"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in macd_signal_series.to_dict().items()
}
vwap_series = volume_weighted_average_price(
df["High"], df["Low"], df["Close"], df["Volume"]
).iloc[-12:]
indicators["vwap"] = {
date.strftime("%Y-%m-%d"): int(value)
for date, value in vwap_series.to_dict().items()
}
return {"stock_price": data.to_dict(orient="records"), "indicators": indicators}
except Exception as e:
return f"Error fetching price data: {str(e)}"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_stock_price], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()