File size: 8,820 Bytes
bf539d4
fb07ec5
 
 
 
 
 
 
 
 
b14b5f0
fb07ec5
 
 
 
 
 
bf539d4
 
fb07ec5
 
 
 
 
bf539d4
fb07ec5
 
b14b5f0
fb07ec5
ba51932
bf539d4
fb07ec5
 
 
 
 
bf539d4
 
fb07ec5
 
bf539d4
fb07ec5
 
 
 
 
 
 
b14b5f0
fb07ec5
 
 
bf539d4
 
 
 
 
fb07ec5
 
 
 
 
 
 
 
b14b5f0
fb07ec5
bf539d4
fb07ec5
 
 
bf539d4
fb07ec5
 
bf539d4
fb07ec5
 
 
b14b5f0
fb07ec5
bf539d4
fb07ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b14b5f0
fb07ec5
bf539d4
fb07ec5
 
 
 
 
 
 
 
 
 
b14b5f0
fb07ec5
bf539d4
 
 
fb07ec5
 
bf539d4
 
 
 
 
 
 
 
 
 
 
fb07ec5
b14b5f0
fb07ec5
 
bf539d4
fb07ec5
bf539d4
fb07ec5
 
 
 
 
b14b5f0
fb07ec5
bf539d4
fb07ec5
 
 
 
 
bf539d4
 
fb07ec5
50e80a6
fb07ec5
 
 
bf539d4
fb07ec5
 
b14b5f0
 
 
 
 
 
 
fb07ec5
b14b5f0
 
 
 
 
bf539d4
fb07ec5
b14b5f0
bf539d4
b14b5f0
 
bf539d4
 
 
fb07ec5
 
 
bf539d4
b14b5f0
 
 
 
 
 
 
 
 
 
 
 
 
bf539d4
b14b5f0
 
bf539d4
b14b5f0
bf539d4
fb07ec5
bf539d4
b14b5f0
 
fb07ec5
 
b14b5f0
fb07ec5
b14b5f0
 
 
 
 
 
 
 
 
 
 
fb07ec5
b14b5f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os 
from dotenv import load_dotenv
load_dotenv()

import requests
from bs4 import BeautifulSoup
from newsapi import NewsApiClient
import pandas as pd
import torch
import soundfile as sf
import gradio as gr
from transformers import (
    AutoModelForSequenceClassification, AutoTokenizer, pipeline,
    BartTokenizer, BartForConditionalGeneration,
    MarianMTModel, MarianTokenizer,
    BarkModel, AutoProcessor
)
import librosa
import re

# -------------------------
# Global Setup and Environment Variables
# -------------------------
NEWS_API_KEY = os.getenv("NEWS_API_KEY")  # Set this in your .env file
device = "cpu"  # Force CPU since no GPU is available in Hugging Face Spaces

# -------------------------
# News Extraction Functions
# -------------------------
def fetch_and_scrape_news(company, api_key, count=1, output_file='news_articles.xlsx'):
    print("Starting news fetch from NewsAPI...")
    newsapi = NewsApiClient(api_key=api_key)
    all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
    articles = all_articles.get('articles', [])
    
    scraped_data = []
    print(f"Found {len(articles)} articles. Starting scraping individual articles...")
    for i, article in enumerate(articles):
        url = article.get('url')
        if url:
            print(f"Scraping article {i+1}: {url}")
            scraped_article = scrape_news(url)
            if scraped_article:
                scraped_article['url'] = url
                scraped_data.append(scraped_article)
    df = pd.DataFrame(scraped_data)
    df.to_excel(output_file, index=False, header=True)
    print(f"News scraping complete. Data saved to {output_file}")
    return df

def scrape_news(url):
    headers = {"User-Agent": "Mozilla/5.0"}
    try:
        response = requests.get(url, headers=headers, timeout=10)
        response.raise_for_status()
    except Exception as e:
        print(f"Failed to fetch the page: {url} ({e})")
        return None
    soup = BeautifulSoup(response.text, "html.parser")
    headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
    paragraphs = soup.find_all("p")
    article_text = " ".join(p.get_text(strip=True) for p in paragraphs)
    return {"headline": headline, "content": article_text}

# -------------------------
# Sentiment Analysis Setup
# -------------------------
print("Loading sentiment analysis model...")
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
    sentiment_model_name, 
    torch_dtype=torch.float32
)
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer, device=-1)
labels = ["positive", "negative", "neutral"]

# -------------------------
# Summarization Setup
# -------------------------
print("Loading summarization model (BART)...")
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')

def split_into_chunks(text, tokenizer, max_tokens=1024):
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        tokenized_word = tokenizer.encode(word, add_special_tokens=False)
        if current_length + len(tokenized_word) <= max_tokens:
            current_chunk.append(word)
            current_length += len(tokenized_word)
        else:
            chunks.append(' '.join(current_chunk))
            current_chunk = [word]
            current_length = len(tokenized_word)
    if current_chunk:
        chunks.append(' '.join(current_chunk))
    return chunks

# -------------------------
# Translation Setup (English to Hindi)
# -------------------------
print("Loading translation model (MarianMT)...")
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
trans_model = MarianMTModel.from_pretrained(translation_model_name)

def translate_text(text):
    tokens = trans_tokenizer(text, return_tensors="pt", padding=True)
    translated = trans_model.generate(**tokens)
    return trans_tokenizer.decode(translated[0], skip_special_tokens=True)

# -------------------------
# Bark TTS Setup (Hindi)
# -------------------------
print("Loading Bark TTS model...")
bark_model = BarkModel.from_pretrained("suno/bark-small")
bark_model.to(device)
processor = AutoProcessor.from_pretrained("suno/bark")

# -------------------------
# Helper Functions for Audio and Text Preprocessing
# -------------------------
def normalize_text(text):
    return re.sub(r"[^\w\s]", "", text.lower()).strip()

def resample_audio(audio_array, orig_sr, target_sr=16000):
    if orig_sr != target_sr:
        audio_array = librosa.resample(audio_array, orig_sr=orig_sr, target_sr=target_sr)
    return audio_array

# -------------------------
# Main Pipeline Function
# -------------------------
def process_company(company):
    print(f"Processing company: {company}")
    # Step 1: Fetch and scrape news
    print("Fetching and scraping news...")
    fetch_and_scrape_news(company, NEWS_API_KEY)
    df = pd.read_excel('news_articles.xlsx')
    print("Scraped Articles:")
    print(df)
    
    articles_data = []
    for index, row in df.iterrows():
        print(f"Processing article {index+1}...")
        article_text = row.get("content", "")
        title = row.get("headline", "No title")
        url = row.get("url", "")
        chunks = split_into_chunks(article_text, bart_tokenizer)
        chunk_summaries = []
        for i, chunk in enumerate(chunks):
            print(f"Summarizing chunk {i+1}/{len(chunks)}...")
            inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
            summary_ids = bart_model.generate(inputs.input_ids, num_beams=2, max_length=50, min_length=30, early_stopping=True)
            chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
            chunk_summaries.append(chunk_summary)
        final_summary = ' '.join(chunk_summaries)
        print("Performing sentiment analysis...")
        sentiment_result = classifier(final_summary, labels)
        sentiment = sentiment_result["labels"][0]
        
        articles_data.append({
            "Title": title,
            "Summary": final_summary,
            "Sentiment": sentiment,
            "URL": url
        })
    
    # Comparative Analysis: Build a simple sentiment distribution
    sentiment_distribution = {"Positive": 0, "Negative": 0, "Neutral": 0}
    for article in articles_data:
        key = article["Sentiment"].capitalize()
        sentiment_distribution[key] += 1
    print("Sentiment distribution computed.")
    
    # Step 2: Translate summaries and generate Hindi speech
    print("Translating summaries to Hindi...")
    translated_summaries = [translate_text(article["Summary"]) for article in articles_data]
    final_translated_text = "\n\n".join(translated_summaries)
    
    print("Generating Hindi speech with Bark TTS...")
    inputs = processor(final_translated_text, return_tensors="pt")
    speech_output = bark_model.generate(**inputs)
    audio_path = "final_summary.wav"
    sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
    print("Audio generated and saved.")
    
    # Build final report
    report = {
        "Company": company,
        "Articles": articles_data,
        "Comparative Sentiment Score": {
            "Sentiment Distribution": sentiment_distribution,
            "Coverage Differences": "Detailed comparative analysis not implemented",
            "Topic Overlap": "Topic extraction not implemented"
        },
        "Final Sentiment Analysis": "Overall sentiment analysis not fully computed",
        "Audio": audio_path
    }
    print("Final report prepared.")
    return report, audio_path

# -------------------------
# Gradio Interface Function
# -------------------------
def gradio_interface(company):
    print(f"Received input: {company}")
    report, audio_path = process_company(company)
    return report, audio_path

# -------------------------
# Gradio UI Setup
# -------------------------
iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(label="Enter Company Name"),
    outputs=[
        gr.JSON(label="News Sentiment Report"),
        gr.Audio(type="filepath", label="Hindi Summary Audio")
    ],
    title="News Summarization & Text-to-Speech",
    description="Enter a company name to fetch news articles, perform sentiment analysis, and listen to a Hindi TTS summary."
)

if __name__ == "__main__":
    iface.launch()