Spaces:
Running
Running
File size: 8,820 Bytes
bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 ba51932 bf539d4 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 bf539d4 fb07ec5 bf539d4 fb07ec5 50e80a6 fb07ec5 bf539d4 fb07ec5 b14b5f0 fb07ec5 b14b5f0 bf539d4 fb07ec5 b14b5f0 bf539d4 b14b5f0 bf539d4 fb07ec5 bf539d4 b14b5f0 bf539d4 b14b5f0 bf539d4 b14b5f0 bf539d4 fb07ec5 bf539d4 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 fb07ec5 b14b5f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
from dotenv import load_dotenv
load_dotenv()
import requests
from bs4 import BeautifulSoup
from newsapi import NewsApiClient
import pandas as pd
import torch
import soundfile as sf
import gradio as gr
from transformers import (
AutoModelForSequenceClassification, AutoTokenizer, pipeline,
BartTokenizer, BartForConditionalGeneration,
MarianMTModel, MarianTokenizer,
BarkModel, AutoProcessor
)
import librosa
import re
# -------------------------
# Global Setup and Environment Variables
# -------------------------
NEWS_API_KEY = os.getenv("NEWS_API_KEY") # Set this in your .env file
device = "cpu" # Force CPU since no GPU is available in Hugging Face Spaces
# -------------------------
# News Extraction Functions
# -------------------------
def fetch_and_scrape_news(company, api_key, count=1, output_file='news_articles.xlsx'):
print("Starting news fetch from NewsAPI...")
newsapi = NewsApiClient(api_key=api_key)
all_articles = newsapi.get_everything(q=company, language='en', sort_by='relevancy', page_size=count)
articles = all_articles.get('articles', [])
scraped_data = []
print(f"Found {len(articles)} articles. Starting scraping individual articles...")
for i, article in enumerate(articles):
url = article.get('url')
if url:
print(f"Scraping article {i+1}: {url}")
scraped_article = scrape_news(url)
if scraped_article:
scraped_article['url'] = url
scraped_data.append(scraped_article)
df = pd.DataFrame(scraped_data)
df.to_excel(output_file, index=False, header=True)
print(f"News scraping complete. Data saved to {output_file}")
return df
def scrape_news(url):
headers = {"User-Agent": "Mozilla/5.0"}
try:
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
except Exception as e:
print(f"Failed to fetch the page: {url} ({e})")
return None
soup = BeautifulSoup(response.text, "html.parser")
headline = soup.find("h1").get_text(strip=True) if soup.find("h1") else "No headline found"
paragraphs = soup.find_all("p")
article_text = " ".join(p.get_text(strip=True) for p in paragraphs)
return {"headline": headline, "content": article_text}
# -------------------------
# Sentiment Analysis Setup
# -------------------------
print("Loading sentiment analysis model...")
sentiment_model_name = "cross-encoder/nli-distilroberta-base"
sentiment_model = AutoModelForSequenceClassification.from_pretrained(
sentiment_model_name,
torch_dtype=torch.float32
)
sentiment_tokenizer = AutoTokenizer.from_pretrained(sentiment_model_name)
classifier = pipeline("zero-shot-classification", model=sentiment_model, tokenizer=sentiment_tokenizer, device=-1)
labels = ["positive", "negative", "neutral"]
# -------------------------
# Summarization Setup
# -------------------------
print("Loading summarization model (BART)...")
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
bart_model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
def split_into_chunks(text, tokenizer, max_tokens=1024):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
tokenized_word = tokenizer.encode(word, add_special_tokens=False)
if current_length + len(tokenized_word) <= max_tokens:
current_chunk.append(word)
current_length += len(tokenized_word)
else:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = len(tokenized_word)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
# -------------------------
# Translation Setup (English to Hindi)
# -------------------------
print("Loading translation model (MarianMT)...")
translation_model_name = 'Helsinki-NLP/opus-mt-en-hi'
trans_tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
trans_model = MarianMTModel.from_pretrained(translation_model_name)
def translate_text(text):
tokens = trans_tokenizer(text, return_tensors="pt", padding=True)
translated = trans_model.generate(**tokens)
return trans_tokenizer.decode(translated[0], skip_special_tokens=True)
# -------------------------
# Bark TTS Setup (Hindi)
# -------------------------
print("Loading Bark TTS model...")
bark_model = BarkModel.from_pretrained("suno/bark-small")
bark_model.to(device)
processor = AutoProcessor.from_pretrained("suno/bark")
# -------------------------
# Helper Functions for Audio and Text Preprocessing
# -------------------------
def normalize_text(text):
return re.sub(r"[^\w\s]", "", text.lower()).strip()
def resample_audio(audio_array, orig_sr, target_sr=16000):
if orig_sr != target_sr:
audio_array = librosa.resample(audio_array, orig_sr=orig_sr, target_sr=target_sr)
return audio_array
# -------------------------
# Main Pipeline Function
# -------------------------
def process_company(company):
print(f"Processing company: {company}")
# Step 1: Fetch and scrape news
print("Fetching and scraping news...")
fetch_and_scrape_news(company, NEWS_API_KEY)
df = pd.read_excel('news_articles.xlsx')
print("Scraped Articles:")
print(df)
articles_data = []
for index, row in df.iterrows():
print(f"Processing article {index+1}...")
article_text = row.get("content", "")
title = row.get("headline", "No title")
url = row.get("url", "")
chunks = split_into_chunks(article_text, bart_tokenizer)
chunk_summaries = []
for i, chunk in enumerate(chunks):
print(f"Summarizing chunk {i+1}/{len(chunks)}...")
inputs = bart_tokenizer([chunk], max_length=1024, return_tensors='pt', truncation=True)
summary_ids = bart_model.generate(inputs.input_ids, num_beams=2, max_length=50, min_length=30, early_stopping=True)
chunk_summary = bart_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
chunk_summaries.append(chunk_summary)
final_summary = ' '.join(chunk_summaries)
print("Performing sentiment analysis...")
sentiment_result = classifier(final_summary, labels)
sentiment = sentiment_result["labels"][0]
articles_data.append({
"Title": title,
"Summary": final_summary,
"Sentiment": sentiment,
"URL": url
})
# Comparative Analysis: Build a simple sentiment distribution
sentiment_distribution = {"Positive": 0, "Negative": 0, "Neutral": 0}
for article in articles_data:
key = article["Sentiment"].capitalize()
sentiment_distribution[key] += 1
print("Sentiment distribution computed.")
# Step 2: Translate summaries and generate Hindi speech
print("Translating summaries to Hindi...")
translated_summaries = [translate_text(article["Summary"]) for article in articles_data]
final_translated_text = "\n\n".join(translated_summaries)
print("Generating Hindi speech with Bark TTS...")
inputs = processor(final_translated_text, return_tensors="pt")
speech_output = bark_model.generate(**inputs)
audio_path = "final_summary.wav"
sf.write(audio_path, speech_output[0].cpu().numpy(), bark_model.generation_config.sample_rate)
print("Audio generated and saved.")
# Build final report
report = {
"Company": company,
"Articles": articles_data,
"Comparative Sentiment Score": {
"Sentiment Distribution": sentiment_distribution,
"Coverage Differences": "Detailed comparative analysis not implemented",
"Topic Overlap": "Topic extraction not implemented"
},
"Final Sentiment Analysis": "Overall sentiment analysis not fully computed",
"Audio": audio_path
}
print("Final report prepared.")
return report, audio_path
# -------------------------
# Gradio Interface Function
# -------------------------
def gradio_interface(company):
print(f"Received input: {company}")
report, audio_path = process_company(company)
return report, audio_path
# -------------------------
# Gradio UI Setup
# -------------------------
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(label="Enter Company Name"),
outputs=[
gr.JSON(label="News Sentiment Report"),
gr.Audio(type="filepath", label="Hindi Summary Audio")
],
title="News Summarization & Text-to-Speech",
description="Enter a company name to fetch news articles, perform sentiment analysis, and listen to a Hindi TTS summary."
)
if __name__ == "__main__":
iface.launch()
|