Spaces:
Sleeping
Sleeping
################################################################################################# | |
# | |
# Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: BSD-3-Clause | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright notice, this | |
# list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above copyright notice, | |
# this list of conditions and the following disclaimer in the documentation | |
# and/or other materials provided with the distribution. | |
# | |
# 3. Neither the name of the copyright holder nor the names of its | |
# contributors may be used to endorse or promote products derived from | |
# this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
# | |
################################################################################################# | |
""" | |
Utilities for emitting CUTLASS >= 3 convolution kernels | |
""" | |
import enum | |
import os.path | |
import shutil | |
import logging | |
from string import Template | |
try: | |
import builtins | |
if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True: | |
raise ImportError("Disabling attempt to import cutlass_library") | |
from cutlass_library.library import * | |
except ImportError: | |
from library import * | |
_LOGGER = logging.getLogger(__name__) | |
################################################################################################### | |
# | |
# Emits single instances of a CUTLASS device-wide operator | |
# | |
################################################################################################### | |
class EmitConv3xInstance: | |
def __init__(self): | |
_LOGGER.debug("*** EmitConv3xInstance::__init__") | |
# Define epilogue type first, so that the mainloop type | |
# can use it with StageCountAutoCarveout. | |
self.template = """ | |
// CUTLASS >= 3 convolution ${conv_kind_name} kernel instance "${operation_name}" | |
using ${operation_name}_epilogue = | |
typename cutlass::epilogue::collective::CollectiveBuilder< | |
${arch}, | |
${opcode_class_epi}, | |
${tile_shape}, // tile shape | |
${cluster_shape}, // cluster shape | |
${epi_tile_mn}, | |
${element_accumulator}, | |
${element_compute}, | |
${element_c}, ${layout_c}, 128 / cute::sizeof_bits_v<${element_c}>, | |
${element_d}, ${layout_d}, 128 / cute::sizeof_bits_v<${element_d}>, | |
${epilogue_schedule} | |
// , class FusionOpOrCallbacks = cutlass::epilogue::fusion::LinearCombination<ElementD,ElementCompute> | |
>::CollectiveOp; | |
using ${operation_name}_mainloop = | |
typename cutlass::conv::collective::CollectiveBuilder< | |
${arch}, | |
${opcode_class_main}, | |
${conv_kind}, // kFprop, kDgrad, or kWgrad | |
${element_a}, ${layout_a}, 128 / cute::sizeof_bits_v<${element_a}>, | |
${element_b}, ${layout_b}, 128 / cute::sizeof_bits_v<${element_b}>, | |
${element_accumulator}, | |
${tile_shape}, // tile shape | |
${cluster_shape}, // cluster shape | |
${stages}, | |
${kernel_schedule} | |
>::CollectiveOp; | |
// Unit tests call this "ConvKernel". | |
// Conv operator ${operation_name} | |
using ${operation_name}_base = cutlass::conv::kernel::ConvUniversal< | |
${operation_name}_mainloop, | |
${operation_name}_epilogue, | |
${tile_scheduler} | |
>; | |
""" | |
def arch_number_to_type(self, arch: int) -> str: | |
return f"cutlass::arch::Sm{arch}" | |
def tile_shape(self, operation) -> str: | |
# For all three kinds of convolutions, the tile shape's K mode | |
# differs from GEMM in that needs to be wrapped in a Shape. | |
# For Wgrad convolutions specifically, | |
# the N tile shape also needs to be wrapped in a Shape. | |
m_template = 'cute::_${tile_shape_m}' | |
if operation.conv_kind == ConvKind.Wgrad: | |
n_template = 'cute::Shape<cute::_${tile_shape_n}>' | |
else: | |
n_template = 'cute::_${tile_shape_n}' | |
k_template = 'cute::Shape<cute::_${tile_shape_k}>' | |
tile_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>' | |
values = { | |
'tile_shape_m': operation.tile_description.tile_shape[0], | |
'tile_shape_n': operation.tile_description.tile_shape[1], | |
'tile_shape_k': operation.tile_description.tile_shape[2] | |
} | |
return Template(tile_shape_template).substitute(values) | |
def cluster_shape(self, operation) -> str: | |
m_template = 'cute::_${cluster_shape_m}' | |
n_template = 'cute::_${cluster_shape_n}' | |
k_template = 'cute::_${cluster_shape_k}' | |
cluster_shape_template = f'cute::Shape<{m_template}, {n_template}, {k_template}>' | |
values = { | |
'cluster_shape_m': operation.tile_description.cluster_shape[0], | |
'cluster_shape_n': operation.tile_description.cluster_shape[1], | |
'cluster_shape_k': operation.tile_description.cluster_shape[2], | |
} | |
return Template(cluster_shape_template).substitute(values) | |
def stage_count(self, operation) -> str: | |
# stages == 0 tells builder to pick the number of stages automatically | |
namespace_prefix = 'cutlass::conv::collective::' | |
if operation.tile_description.stages > 0: | |
return f"{namespace_prefix}StageCount<{str(operation.tile_description.stages)}>" | |
else: | |
return f"{namespace_prefix}StageCountAutoCarveout<sizeof(typename {operation.procedural_name()}_epilogue::SharedStorage)>" | |
def emit(self, operation) -> str: | |
_LOGGER.debug("*** EmitConv3xInstance::emit") | |
_LOGGER.debug("*** operation: procedural_name()=" + operation.procedural_name()) | |
# Identify the operation as CUTLASS 3 by its is_3x field | |
if (not hasattr(operation, 'is_3x')) or (not operation.is_3x): | |
raise RuntimeError("operation must be a CUTLASS 3 operation") | |
epi_tile_mn = "cutlass::epilogue::collective::EpilogueTileAuto" | |
opcode_class_main = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class] | |
opcode_class_epi = opcode_class_main | |
tile_shape = operation.tile_description.tile_shape | |
warp_count = operation.tile_description.warp_count | |
epilogue_schedule = EpilogueScheduleTag[operation.epilogue_schedule] | |
# KernelScheduleTag and TileSchedulerTag both hard-code the | |
# namespace qualification of KernelScheduleAuto as | |
# "cutlass::gemm::collective::" (unless the tag is 'void'). | |
# | |
# For TileSchedulerTag, this namespace is fine, since CUTLASS 3 | |
# convolutions use the same tile schedulers (from the same | |
# cutlass::gemm::collective namespace) as GEMMs. | |
kernel_schedule = KernelScheduleTag[operation.kernel_schedule].replace('gemm::', 'conv::') | |
tile_scheduler = TileSchedulerTag[operation.tile_scheduler] | |
opcode_class = OpcodeClassTag[operation.tile_description.math_instruction.opcode_class] | |
values = { | |
'operation_name': operation.procedural_name(), | |
'conv_kind': ConvKindTag[operation.conv_kind], | |
'conv_kind_name': ConvKindNames[operation.conv_kind].capitalize(), | |
'element_a': DataTypeTag[operation.A.element], | |
'layout_a': LayoutTag[operation.A.layout], | |
'align_a': int(operation.A.alignment), | |
'element_b': DataTypeTag[operation.B.element], | |
'layout_b': LayoutTag[operation.B.layout], | |
'align_b': int(operation.B.alignment), | |
'element_c': DataTypeTag[operation.C.element], | |
'layout_c': LayoutTag[operation.C.layout], | |
'align_c': int(operation.C.alignment), | |
'element_d': DataTypeTag[operation.D.element], | |
'layout_d': LayoutTag[operation.D.layout], | |
'align_d': int(operation.D.alignment), | |
'element_accumulator': DataTypeTag[operation.accumulator_type()], | |
'opcode_class': opcode_class, | |
'arch': self.arch_number_to_type(operation.arch), | |
'tile_shape': self.tile_shape(operation), | |
'cluster_shape': self.cluster_shape(operation), | |
'opcode_class_epi': opcode_class_epi, | |
'opcode_class_main': opcode_class_main, | |
'epi_tile_mn': epi_tile_mn, | |
'stages': self.stage_count(operation), | |
'kernel_schedule': kernel_schedule, | |
'epilogue_schedule': epilogue_schedule, | |
'tile_scheduler': tile_scheduler, | |
'element_compute': DataTypeTag[operation.element_compute] | |
} | |
return Template(self.template).substitute(values) | |
class EmitConv3xIncludes: | |
def __init__(self): | |
_LOGGER.debug("*** EmitConv3xIncludes::__init__") | |
self.includes = ['conv_operation_3x.hpp', | |
'cutlass/conv/device/conv_universal_adapter.hpp', | |
'cutlass/conv/kernel/conv_universal.hpp', | |
'cutlass/conv/collective/collective_builder.hpp', | |
'cutlass/epilogue/collective/collective_builder.hpp'] | |
def emit(self, operation) -> str: | |
_LOGGER.debug("*** EmitConv3xIncludes::emit") | |
return '\n'.join(f"#include \"{incl}\"" for incl in self.includes) + \ | |
"\n\n///////////////////////////////////////////////////////////////////////////////////////////////////" | |