File size: 948 Bytes
73bce0b 0b1ef42 d97cf54 73bce0b f6c7248 73bce0b f6c7248 73bce0b dce1999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from fastapi import FastAPI
from pydantic import BaseModel
from llama_cpp import Llama
# Model loading with specified path and configuration
llm = Llama(
model_path="Llama-3.2-3B-Instruct-Q8_0.gguf", # Update the path as necessary
n_ctx=4096,
n_threads=2,
)
# Pydantic object for validation
class Validation(BaseModel):
user_prompt: str # This will be the direct SQL query request or relevant prompt
max_tokens: int = 1024
temperature: float = 0.01
# FastAPI application initialization
app = FastAPI()
# Endpoint for generating responses
@app.post("/generate_response")
async def generate_response(item: Validation):
# Call the Llama model to generate a response directly based on the user's prompt
output = llm(item.user_prompt, max_tokens=item.max_tokens, temperature=item.temperature, echo=False)
# Extract and return the text from the response
return output['choices'][0]['text']
|