File size: 19,319 Bytes
6599671
 
 
 
6580f2d
 
6599671
 
 
 
 
 
 
 
e2fe7f3
2038e22
fc73371
 
 
 
e2fe7f3
6599671
 
6580f2d
 
6599671
 
 
 
 
 
 
 
 
 
 
 
6580f2d
 
 
 
 
 
 
 
6599671
 
 
 
 
 
 
 
 
 
2038e22
 
 
 
 
e2fe7f3
6580f2d
 
 
 
 
 
 
 
 
 
 
 
2038e22
 
46fcfa7
c76c20f
 
2038e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2fe7f3
6599671
6580f2d
6599671
 
 
 
 
 
 
 
 
 
6580f2d
6599671
 
 
 
6580f2d
 
 
 
 
6599671
 
 
 
 
 
6580f2d
6599671
 
 
 
 
 
 
 
6580f2d
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
f0184d5
6599671
 
f0184d5
e864f13
 
 
 
f0184d5
 
e864f13
 
 
 
f0184d5
 
e864f13
 
 
 
f0184d5
 
e864f13
 
 
f0184d5
 
e864f13
 
 
f0184d5
6599671
6580f2d
e3016af
 
 
 
 
 
d8f1036
6599671
6580f2d
e864f13
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6580f2d
 
6599671
6580f2d
6599671
e2fe7f3
 
6599671
 
 
 
 
e2fe7f3
 
2038e22
c9c3c96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038e22
 
c9c3c96
 
 
 
 
 
 
2038e22
c9c3c96
2038e22
 
c9c3c96
2038e22
 
 
 
 
c76c20f
 
 
 
 
 
 
 
 
2038e22
c9c3c96
500e0dd
 
 
640491a
 
8fdb273
 
 
ed68117
8fdb273
ed68117
 
 
8fdb273
 
 
 
 
 
ed68117
8fdb273
640491a
ed68117
 
 
 
 
8fdb273
ed68117
 
c9c3c96
 
 
 
 
 
 
 
8c6c171
c9c3c96
 
 
 
8c6c171
 
c9c3c96
 
 
 
8c6c171
 
c9c3c96
 
8c6c171
 
 
 
 
 
 
 
c9c3c96
 
 
 
 
 
8c6c171
 
8fdb273
ed68117
8fdb273
98fd5cd
ed68117
 
 
 
 
 
 
8fdb273
 
 
 
 
 
ed68117
a8afec1
 
8fdb273
ed68117
 
 
a8afec1
 
ed68117
 
a8afec1
 
 
 
 
 
 
 
 
 
 
 
8fdb273
a8afec1
 
 
 
98fd5cd
a8afec1
98fd5cd
a8afec1
 
 
 
 
 
 
640491a
2038e22
ed68117
a4d2f95
6599671
98fd5cd
e2fe7f3
500e0dd
98fd5cd
0948d56
e2fe7f3
8fdb273
500e0dd
0948d56
 
 
e2fe7f3
8fdb273
e2fe7f3
 
 
 
 
 
a4d2f95
 
d2863d2
e2fe7f3
c9c3c96
 
 
 
 
 
500e0dd
c9c3c96
 
e2fe7f3
 
2038e22
 
 
d2863d2
a4d2f95
e2fe7f3
c9c3c96
e2fe7f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Load the disease dataset
df_train = pd.read_csv("Training.csv")  # Change the file path as necessary
df_test = pd.read_csv("Testing.csv")  # Change the file path as necessary

# Encode diseases
disease_dict = {
    'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
    'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
    'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
    'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
    'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
    'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
    'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
    'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
    '(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
    'Psoriasis': 39, 'Impetigo': 40
}

# Function to prepare data
def prepare_data(df):
    """Prepares data for training/testing."""
    X = df.iloc[:, :-1]  # Features
    y = df.iloc[:, -1]   # Target
    label_encoder = LabelEncoder()
    y_encoded = label_encoder.fit_transform(y)
    return X, y_encoded, label_encoder

# Preparing training and testing data
X_train, y_train, label_encoder_train = prepare_data(df_train)
X_test, y_test, label_encoder_test = prepare_data(df_test)

# Define the models
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Naive Bayes": GaussianNB()
}

# Train and evaluate models
trained_models = {}
for model_name, model_obj in models.items():
    model_obj.fit(X_train, y_train)  # Fit the model
    y_pred = model_obj.predict(X_test)  # Make predictions
    acc = accuracy_score(y_test, y_pred)  # Calculate accuracy
    trained_models[model_name] = {'model': model_obj, 'accuracy': acc}

# Helper Functions for Chatbot
def bag_of_words(s, words):
    """Convert user input to bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    """Generate chatbot response and maintain conversation history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment and map to emojis."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    """Detect emotions based on input."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    """Return relevant suggestions based on detected emotions."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
            ("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
        ],
        "anger": [
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
            ("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/MIc299Flibs"),
        ],
        "fear": [
            ("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
            ("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
        ],
        "sadness": [
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"),
        ],
        "surprise": [
            ("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
            ("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
        ],
    }
    
    # Create a markdown string for clickable suggestions in a table format
    formatted_suggestions = ["### Suggestions"]
    formatted_suggestions.append(f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:")
    formatted_suggestions.append("| Title | Link |")
    formatted_suggestions.append("|-------|------|")  # Table headers
    formatted_suggestions += [
        f"| {title} | [{link}]({link}) |" for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")])
    ]

    return "\n".join(formatted_suggestions)

def get_health_professionals_and_map(location, query):
    """Search nearby healthcare professionals using Google Maps API."""
    try:
        if not location or not query:
            return [], ""  # Return empty list if inputs are missing

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append([place['name'], place.get('vicinity', 'No address provided')])
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return [], ""  # Return empty list if no professionals found
    except Exception as e:
        return [], ""  # Return empty list on exception

# Main Application Logic for Chatbot
def app_function_chatbot(user_input, location, query, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html

# Disease Prediction Logic
# def predict_disease(symptoms):
#     """Predict disease based on input symptoms."""
#     valid_symptoms = [s for s in symptoms if s is not None]
#     if len(valid_symptoms) < 3:
#         return "Please select at least 3 symptoms for a better prediction."
#     input_test = np.zeros(len(X_train.columns))  # Create an array for feature input
#     for symptom in symptoms:
#         if symptom in X_train.columns:
#             input_test[X_train.columns.get_loc(symptom)] = 1
#     predictions = {}
#     for model_name, info in trained_models.items():
#         prediction = info['model'].predict([input_test])[0]
#         predicted_disease = label_encoder_train.inverse_transform([prediction])[0]
#         predictions[model_name] = predicted_disease

#     # Create a Markdown table for displaying predictions
#     markdown_output = ["### Predicted Diseases"]
#     markdown_output.append("| Model | Predicted Disease |")
#     markdown_output.append("|-------|------------------|")  # Table headers
#     for model_name, disease in predictions.items():
#         markdown_output.append(f"| {model_name} | {disease} |")
    
#     return "\n".join(markdown_output)
def predict_disease(symptoms):
    """Predict disease based on input symptoms."""
    # Filter out None values
    valid_symptoms = [s for s in symptoms if s is not None]
    
    # Ensure at least 3 symptoms are selected
    if len(valid_symptoms) < 3:
        return "Please select at least 3 symptoms for a better prediction."
    
    input_test = np.zeros(len(X_train.columns))  # Create an array for feature input
    for symptom in valid_symptoms:
        if symptom in X_train.columns:
            input_test[X_train.columns.get_loc(symptom)] = 1
    
    predictions = {}
    for model_name, info in trained_models.items():
        prediction = info['model'].predict([input_test])[0]
        predicted_disease = label_encoder_train.inverse_transform([prediction])[0]
        predictions[model_name] = predicted_disease

    # Create a Markdown table for displaying predictions
    markdown_output = ["### Predicted Diseases"]
    markdown_output.append("| Model | Predicted Disease |")
    markdown_output.append("|-------|------------------|")  # Table headers
    for model_name, disease in predictions.items():
        markdown_output.append(f"| {model_name} | {disease} |")
    
    return "\n".join(markdown_output)


from gradio.components import HTML

# Custom CSS for styling
custom_css = """
/* Importing Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');

/* General Body Styling */
body {
    font-family: 'Roboto', sans-serif;
    background-color: #f0f4f7; /* Light background for better contrast */
}

/* Header Styling */
h1, h2, h3, h4 {
    font-weight: bold; /* Make all headings bold */
    color: #3c6487; /* Theme color for headings */
}

h1 {
    font-size: 2.5rem; /* Bigger header size */
    background: linear-gradient(135deg, #3c6487, #355f7a); /* Gradient using your color */
    color: #ffffff;
    border-radius: 12px;
    padding: 15px;
    text-align: center;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); /* Shadow effect */
    margin-bottom: 20px; /* Spacing below the header */
}

/* Button Styling */
.gr-button {
    background-color: #3c6487; /* Button background */
    color: white;
    border-radius: 8px;
    padding: 10px 15px; /* Adjusted padding */
    font-size: 16px; /* Font size for buttons */
    border: none; /* No border */
    cursor: pointer; /* Pointer on hover */
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2); /* Shadow on button */
    display: inline-block; /* Inline-block to wrap text */
    position: relative; /* For pseudo-element positioning */
    text-decoration: none; /* Remove default underline */
}

/* Button hover states */
.gr-button:hover {
    background: linear-gradient(to right, #a0c4e1, #3c6487); /* Light blue gradient on hover */
    transition: background 0.3s; /* Ease the background change */
}

/* Add a blue underline effect */
.gr-button::after {
    content: ""; /* Empty content for underline */
    display: block;
    width: 100%; /* Full width */
    height: 3px; /* Height of the underline */
    background: #3c6487; /* Underline color */
    position: absolute;
    bottom: -5px; /* Position it below the text */
    left: 0;
    transform: scaleX(0); /* Initially scale to 0 (invisible) */
    transition: transform 0.3s; /* Smooth transition for the underline */
}

.gr-button:hover::after {
    transform: scaleX(1); /* Scale to full width on hover */
}

/* Input and Textarea Styling */
textarea, input {
    background: white; /* Input background */
    color: black; /* Text color */
    border: 2px solid #3c6487; /* Matching border color */
    padding: 10px;
    font-size: 1rem;
    border-radius: 10px;
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); /* Light shadow for inputs */
}

textarea:focus, input:focus {
    border-color: #ae1c93; /* Highlight border color on focus */
    box-shadow: 0 0 5px rgba(174, 28, 147, 0.5); /* Shadow on focus */
}

/* DataFrame Container Styling */
.df-container {
    background: white; /* Background for data frames */
    color: black; /* Text color */
    border: 2px solid #3c6487; /* Matching border color for data frames */
    border-radius: 10px;
    padding: 10px;
    font-size: 14px;
    max-height: 400px; /* Maximum height for scrolling */
    overflow-y: auto; /* Enable scrolling */
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); /* Light shadow for data frame */
}

/* Suggestions Markdown Formatting */
.markdown {
    padding: 15px; /* Padding for Markdown sections */
    border-radius: 10px; /* Round corners for better appearance */
    background-color: #eaeff1; /* Light background for suggestions */
    border: 1px solid #3c6487; /* Border to distinguish */
    box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); /* Light shadow */
}

@media (max-width: 768px) {
    h1 {
        font-size: 2rem; /* Smaller font size for smaller screens */
        padding: 10px;
    }

    .gr-button {
        font-size: 0.9rem; /* Adjusted size for mobile */
        padding: 8px 16px; /* Adjust padding for mobile */
        width: auto; /* Maintain auto width */
    }

    textarea, input {
        width: 100%; /* Full width for inputs */
        margin-bottom: 10px; /* Spacing between inputs */
    }
}
"""
# Gradio Application Interface
with gr.Blocks(css=custom_css) as app:
    gr.HTML("<h1>🌟 Well-Being Companion</h1>")
    
    with gr.Tab("Well-Being Chatbot"):
        with gr.Row():
            user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3)
            location = gr.Textbox(label="Please Enter Your Current Location Here", placeholder="E.g., Honolulu", max_lines=1)
            query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1)
        
        submit_chatbot = gr.Button(value="Submit Your Message", variant="primary", icon="fa-paper-plane")
        
        chatbot = gr.Chatbot(label="Chat History", show_label=True)
        sentiment = gr.Textbox(label="Detected Sentiment", show_label=True)
        emotion = gr.Textbox(label="Detected Emotion", show_label=True)
        
        suggestions_markdown = gr.Markdown(label="Suggestions")
        professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
        map_html = gr.HTML(label="Interactive Map")

        submit_chatbot.click(
            app_function_chatbot,
            inputs=[user_input, location, query, chatbot],
            outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html],
        )

    with gr.Tab("Disease Prediction"):
        symptom1 = gr.Dropdown(choices=[None] + X_train.columns.tolist(), label="Select Symptom 1", value=None)
        symptom2 = gr.Dropdown(choices=[None] + X_train.columns.tolist(), label="Select Symptom 2", value=None)
        symptom3 = gr.Dropdown(choices=[None] + X_train.columns.tolist(), label="Select Symptom 3", value=None)
        symptom4 = gr.Dropdown(choices=[None] + X_train.columns.tolist(), label="Select Symptom 4", value=None)
        symptom5 = gr.Dropdown(choices=[None] + X_train.columns.tolist(), label="Select Symptom 5", value=None)
    
        submit_disease = gr.Button(value="Predict Disease", variant="primary", icon="fa-stethoscope")
    
        disease_prediction_result = gr.Markdown(label="Predicted Diseases")

        submit_disease.click(
            lambda symptom1, symptom2, symptom3, symptom4, symptom5: predict_disease(
                [symptom1, symptom2, symptom3, symptom4, symptom5]),
            inputs=[symptom1, symptom2, symptom3, symptom4, symptom5],
            outputs=disease_prediction_result
        )


# Launch the Gradio application
app.launch()