File size: 13,526 Bytes
6599671
 
 
 
6580f2d
 
6599671
 
 
 
 
 
 
 
e2fe7f3
2038e22
fc73371
 
 
 
e2fe7f3
6599671
 
6580f2d
 
6599671
 
 
 
 
 
 
 
 
 
 
 
6580f2d
 
 
 
 
 
 
 
6599671
 
 
 
 
 
 
 
 
 
2038e22
 
 
 
 
e2fe7f3
6580f2d
 
 
 
 
 
 
 
 
 
 
 
2038e22
 
c76c20f
 
2038e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2fe7f3
6599671
6580f2d
6599671
 
 
 
 
 
 
 
 
 
6580f2d
6599671
 
 
 
6580f2d
 
 
 
 
6599671
 
 
 
 
 
6580f2d
6599671
 
 
 
 
 
 
 
6580f2d
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
f0184d5
6599671
 
f0184d5
e864f13
 
 
 
f0184d5
 
e864f13
 
 
 
f0184d5
 
e864f13
 
 
 
f0184d5
 
e864f13
 
 
f0184d5
 
e864f13
 
 
f0184d5
6599671
6580f2d
e3016af
 
 
 
 
 
d8f1036
6599671
6580f2d
e864f13
6599671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6580f2d
 
6599671
6580f2d
6599671
e2fe7f3
 
6599671
 
 
 
 
e2fe7f3
 
2038e22
 
 
 
e2fe7f3
2038e22
 
 
 
 
 
 
c76c20f
 
 
 
 
 
 
 
 
2038e22
 
 
6580f2d
6599671
e2fe7f3
 
 
 
 
 
 
6580f2d
e2fe7f3
 
 
 
e3016af
e2fe7f3
 
 
 
 
 
e864f13
e2fe7f3
 
 
2038e22
 
 
 
 
 
 
c76c20f
e2fe7f3
 
2038e22
 
 
e2fe7f3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Load the disease dataset
df_train = pd.read_csv("Training.csv")  # Change the file path as necessary
df_test = pd.read_csv("Testing.csv")  # Change the file path as necessary

# Encode diseases
disease_dict = {
    'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
    'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
    'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
    'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
    'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
    'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
    'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
    'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
    '(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
    'Psoriasis': 39, 'Impetigo': 40
}

# Function to prepare data
def prepare_data(df):
    X = df.iloc[:, :-1]  # Features
    y = df.iloc[:, -1]   # Target
    label_encoder = LabelEncoder()
    y_encoded = label_encoder.fit_transform(y)
    return X, y_encoded, label_encoder

# Preparing training and testing data
X_train, y_train, label_encoder_train = prepare_data(df_train)
X_test, y_test, label_encoder_test = prepare_data(df_test)

# Define the models
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Naive Bayes": GaussianNB()
}

# Train and evaluate models
trained_models = {}
for model_name, model_obj in models.items():
    model_obj.fit(X_train, y_train)  # Fit the model
    y_pred = model_obj.predict(X_test)  # Make predictions
    acc = accuracy_score(y_test, y_pred)  # Calculate accuracy
    trained_models[model_name] = {'model': model_obj, 'accuracy': acc}

# Helper Functions for Chatbot
def bag_of_words(s, words):
    """Convert user input to bag-of-words vector."""
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    """Generate chatbot response and maintain conversation history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Analyze sentiment and map to emojis."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    """Detect emotions based on input."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    """Return relevant suggestions based on detected emotions."""
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
            ("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
        ],
        "anger": [
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
            ("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/MIc299Flibs"),
        ],
        "fear": [
            ("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
            ("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
        ],
        "sadness": [
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"),
        ],
        "surprise": [
            ("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
            ("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
        ],
    }
    
    # Create a markdown string for clickable suggestions in a table format
    formatted_suggestions = ["### Suggestions"]
    formatted_suggestions.append(f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:")
    formatted_suggestions.append("| Title | Link |")
    formatted_suggestions.append("|-------|------|")  # Table headers
    formatted_suggestions += [
        f"| {title} | [{link}]({link}) |" for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")])
    ]

    return "\n".join(formatted_suggestions)

def get_health_professionals_and_map(location, query):
    """Search nearby healthcare professionals using Google Maps API."""
    try:
        if not location or not query:
            return [], ""  # Return empty list if inputs are missing

        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append([place['name'], place.get('vicinity', 'No address provided')])
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()

        return [], ""  # Return empty list if no professionals found
    except Exception as e:
        return [], ""  # Return empty list on exception

# Main Application Logic for Chatbot
def app_function_chatbot(user_input, location, query, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html

# Disease Prediction Logic
def predict_disease(symptoms):
    """Predict disease based on input symptoms."""
    input_test = np.zeros(len(X_train.columns))  # Create an array for feature input
    for symptom in symptoms:
        if symptom in X_train.columns:
            input_test[X_train.columns.get_loc(symptom)] = 1
    predictions = {}
    for model_name, info in trained_models.items():
        prediction = info['model'].predict([input_test])[0]
        predicted_disease = label_encoder_train.inverse_transform([prediction])[0]
        predictions[model_name] = predicted_disease

    # Create a Markdown table for displaying predictions
    markdown_output = ["### Predicted Diseases"]
    markdown_output.append("| Model | Predicted Disease |")
    markdown_output.append("|-------|------------------|")  # Table headers
    for model_name, disease in predictions.items():
        markdown_output.append(f"| {model_name} | {disease} |")
    
    return "\n".join(markdown_output)

# Gradio Application Interface
with gr.Blocks() as app:
    gr.HTML("<h1>🌟 Well-Being Companion</h1>")
    
    with gr.Tab("Mental Health Chatbot"):
        with gr.Row():
            user_input = gr.Textbox(label="Please Enter Your Message Here")
            location = gr.Textbox(label="Please Enter Your Current Location Here")
            query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
        
        submit_chatbot = gr.Button(value="Submit Chatbot", variant="primary")

        chatbot = gr.Chatbot(label="Chat History")
        sentiment = gr.Textbox(label="Detected Sentiment")
        emotion = gr.Textbox(label="Detected Emotion")
        
        suggestions_markdown = gr.Markdown(label="Suggestions")  # Markdown for displaying clickable links
        professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
        map_html = gr.HTML(label="Interactive Map")

        submit_chatbot.click(
            app_function_chatbot,
            inputs=[user_input, location, query, chatbot],
            outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html],
        )

    with gr.Tab("Disease Prediction"):
        symptom1 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 1")
        symptom2 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 2")
        symptom3 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 3")
        symptom4 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 4")
        symptom5 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 5")
        
        submit_disease = gr.Button(value="Predict Disease", variant="primary")
        disease_prediction_result = gr.Markdown(label="Predicted Diseases")  # Use Markdown for predictions

        submit_disease.click(
            lambda symptom1, symptom2, symptom3, symptom4, symptom5: predict_disease(
                [symptom1, symptom2, symptom3, symptom4, symptom5]),
            inputs=[symptom1, symptom2, symptom3, symptom4, symptom5],
            outputs=disease_prediction_result,
        )

# Launch the Gradio application
app.launch()