Spaces:
Sleeping
Sleeping
File size: 13,526 Bytes
6599671 6580f2d 6599671 e2fe7f3 2038e22 fc73371 e2fe7f3 6599671 6580f2d 6599671 6580f2d 6599671 2038e22 e2fe7f3 6580f2d 2038e22 c76c20f 2038e22 e2fe7f3 6599671 6580f2d 6599671 6580f2d 6599671 6580f2d 6599671 6580f2d 6599671 6580f2d 6599671 f0184d5 6599671 f0184d5 e864f13 f0184d5 e864f13 f0184d5 e864f13 f0184d5 e864f13 f0184d5 e864f13 f0184d5 6599671 6580f2d e3016af d8f1036 6599671 6580f2d e864f13 6599671 6580f2d 6599671 6580f2d 6599671 e2fe7f3 6599671 e2fe7f3 2038e22 e2fe7f3 2038e22 c76c20f 2038e22 6580f2d 6599671 e2fe7f3 6580f2d e2fe7f3 e3016af e2fe7f3 e864f13 e2fe7f3 2038e22 c76c20f e2fe7f3 2038e22 e2fe7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load intents and chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
# Load the disease dataset
df_train = pd.read_csv("Training.csv") # Change the file path as necessary
df_test = pd.read_csv("Testing.csv") # Change the file path as necessary
# Encode diseases
disease_dict = {
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes ': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
'Hypertension ': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'hepatitis A': 19,
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
'(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
'Psoriasis': 39, 'Impetigo': 40
}
# Function to prepare data
def prepare_data(df):
X = df.iloc[:, :-1] # Features
y = df.iloc[:, -1] # Target
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
return X, y_encoded, label_encoder
# Preparing training and testing data
X_train, y_train, label_encoder_train = prepare_data(df_train)
X_test, y_test, label_encoder_test = prepare_data(df_test)
# Define the models
models = {
"Decision Tree": DecisionTreeClassifier(),
"Random Forest": RandomForestClassifier(),
"Naive Bayes": GaussianNB()
}
# Train and evaluate models
trained_models = {}
for model_name, model_obj in models.items():
model_obj.fit(X_train, y_train) # Fit the model
y_pred = model_obj.predict(X_test) # Make predictions
acc = accuracy_score(y_test, y_pred) # Calculate accuracy
trained_models[model_name] = {'model': model_obj, 'accuracy': acc}
# Helper Functions for Chatbot
def bag_of_words(s, words):
"""Convert user input to bag-of-words vector."""
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def generate_chatbot_response(message, history):
"""Generate chatbot response and maintain conversation history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm sorry, I didn't understand that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {e}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Analyze sentiment and map to emojis."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
def detect_emotion(user_input):
"""Detect emotions based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"].lower().strip()
emotion_map = {
"joy": "Joy π",
"anger": "Anger π ",
"sadness": "Sadness π’",
"fear": "Fear π¨",
"surprise": "Surprise π²",
"neutral": "Neutral π",
}
return emotion_map.get(emotion, "Unknown π€"), emotion
def generate_suggestions(emotion):
"""Return relevant suggestions based on detected emotions."""
emotion_key = emotion.lower()
suggestions = {
"joy": [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
],
"anger": [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/MIc299Flibs"),
],
"fear": [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
],
"sadness": [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"),
],
"surprise": [
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
],
}
# Create a markdown string for clickable suggestions in a table format
formatted_suggestions = ["### Suggestions"]
formatted_suggestions.append(f"Since youβre feeling {emotion}, you might find these links particularly helpful. Donβt hesitate to explore:")
formatted_suggestions.append("| Title | Link |")
formatted_suggestions.append("|-------|------|") # Table headers
formatted_suggestions += [
f"| {title} | [{link}]({link}) |" for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")])
]
return "\n".join(formatted_suggestions)
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals using Google Maps API."""
try:
if not location or not query:
return [], "" # Return empty list if inputs are missing
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return [], "" # Return empty list if no professionals found
except Exception as e:
return [], "" # Return empty list on exception
# Main Application Logic for Chatbot
def app_function_chatbot(user_input, location, query, history):
chatbot_history, _ = generate_chatbot_response(user_input, history)
sentiment_result = analyze_sentiment(user_input)
emotion_result, cleaned_emotion = detect_emotion(user_input)
suggestions = generate_suggestions(cleaned_emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
# Disease Prediction Logic
def predict_disease(symptoms):
"""Predict disease based on input symptoms."""
input_test = np.zeros(len(X_train.columns)) # Create an array for feature input
for symptom in symptoms:
if symptom in X_train.columns:
input_test[X_train.columns.get_loc(symptom)] = 1
predictions = {}
for model_name, info in trained_models.items():
prediction = info['model'].predict([input_test])[0]
predicted_disease = label_encoder_train.inverse_transform([prediction])[0]
predictions[model_name] = predicted_disease
# Create a Markdown table for displaying predictions
markdown_output = ["### Predicted Diseases"]
markdown_output.append("| Model | Predicted Disease |")
markdown_output.append("|-------|------------------|") # Table headers
for model_name, disease in predictions.items():
markdown_output.append(f"| {model_name} | {disease} |")
return "\n".join(markdown_output)
# Gradio Application Interface
with gr.Blocks() as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
with gr.Tab("Mental Health Chatbot"):
with gr.Row():
user_input = gr.Textbox(label="Please Enter Your Message Here")
location = gr.Textbox(label="Please Enter Your Current Location Here")
query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
submit_chatbot = gr.Button(value="Submit Chatbot", variant="primary")
chatbot = gr.Chatbot(label="Chat History")
sentiment = gr.Textbox(label="Detected Sentiment")
emotion = gr.Textbox(label="Detected Emotion")
suggestions_markdown = gr.Markdown(label="Suggestions") # Markdown for displaying clickable links
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"])
map_html = gr.HTML(label="Interactive Map")
submit_chatbot.click(
app_function_chatbot,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html],
)
with gr.Tab("Disease Prediction"):
symptom1 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 1")
symptom2 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 2")
symptom3 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 3")
symptom4 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 4")
symptom5 = gr.Dropdown(X_train.columns.tolist(), label="Select Symptom 5")
submit_disease = gr.Button(value="Predict Disease", variant="primary")
disease_prediction_result = gr.Markdown(label="Predicted Diseases") # Use Markdown for predictions
submit_disease.click(
lambda symptom1, symptom2, symptom3, symptom4, symptom5: predict_disease(
[symptom1, symptom2, symptom3, symptom4, symptom5]),
inputs=[symptom1, symptom2, symptom3, symptom4, symptom5],
outputs=disease_prediction_result,
)
# Launch the Gradio application
app.launch() |