Spaces:
Sleeping
Sleeping
File size: 11,297 Bytes
334ba26 7684892 334ba26 7684892 334ba26 5e7f7ee 334ba26 5e7f7ee 7684892 334ba26 ae282f5 334ba26 48a4b0f 334ba26 674b44a 334ba26 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a e6396eb 674b44a 2fd1c83 674b44a 2fd1c83 674b44a 2fd1c83 674b44a 2fd1c83 674b44a e6396eb 2fd1c83 5b95047 674b44a 334ba26 613b05f e6396eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, response
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Emotion detection function with suggestions in plain English and resources in table
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
# Define emotion-specific message and resources
if emotion == 'joy':
emotion_msg = "You're feeling happy! Keep up the great mood!"
resources = [
{"subject": "Relaxation Techniques", "heading": "Mindful Breathing Meditation", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation", "video_url": "https://youtu.be/m1vaUGtyo-A"},
{"subject": "Dealing with Stress", "heading": "Tips for Dealing with Anxiety", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/m1vaUGtyo-A"},
{"subject": "Emotional Wellness Toolkit", "heading": "Emotional Wellness Resources", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/m1vaUGtyo-A"}
]
elif emotion == 'anger':
emotion_msg = "You're feeling angry. It's okay to feel this way. Let's try to calm down."
resources = [
{"subject": "Emotional Wellness Toolkit", "heading": "Managing Emotions", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/MIc299Flibs"},
{"subject": "Stress Management Tips", "heading": "Managing Stress Effectively", "link": "https://www.health.harvard.edu/health-a-to-z", "video_url": "https://youtu.be/MIc299Flibs"},
{"subject": "Dealing with Anger", "heading": "Strategies to Calm Anger", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/MIc299Flibs"}
]
elif emotion == 'fear':
emotion_msg = "You're feeling fearful. Take a moment to breathe and relax."
resources = [
{"subject": "Mindfulness Practices", "heading": "Breathing Techniques", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation", "video_url": "https://youtu.be/yGKKz185M5o"},
{"subject": "Coping with Anxiety", "heading": "Overcoming Fear", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/yGKKz185M5o"},
{"subject": "Emotional Wellness Toolkit", "heading": "Calming Your Mind", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/yGKKz185M5o"}
]
elif emotion == 'sadness':
emotion_msg = "You're feeling sad. It's okay to take a break."
resources = [
{"subject": "Emotional Wellness Toolkit", "heading": "Restoring Your Emotional Health", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/-e-4Kx5px_I"},
{"subject": "Dealing with Anxiety", "heading": "Coping Strategies for Stress", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/-e-4Kx5px_I"}
]
elif emotion == 'surprise':
emotion_msg = "You're feeling surprised. It's okay to feel neutral!"
resources = [
{"subject": "Managing Stress", "heading": "Relaxation Tips", "link": "https://www.health.harvard.edu/health-a-to-z", "video_url": "https://youtu.be/m1vaUGtyo-A"},
{"subject": "Coping Strategies", "heading": "Dealing with Unexpected Events", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/m1vaUGtyo-A"}
]
else:
emotion_msg = "Could not detect emotion."
resources = []
# Create a DataFrame for resources to display in table format
resource_df = pd.DataFrame(resources)
return emotion_msg, resource_df
# Google Geocoding API setup to convert city name to latitude/longitude
geocode_url = "https://maps.googleapis.com/maps/api/geocode/json"
def get_lat_lon(location, api_key):
params = {
"address": location,
"key": api_key
}
response = requests.get(geocode_url, params=params)
if response.status_code == 200:
result = response.json()
if result['status'] == 'OK':
# Return the first result's latitude and longitude
location = result['results'][0]['geometry']['location']
return location['lat'], location['lng']
return None, None
# Google Places API setup for wellness professionals
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
api_key = os.getenv("GOOGLE_API_KEY") # Use environment variable for security
# Function to get places data using Google Places API
def get_places_data(query, location, radius, api_key, next_page_token=None):
params = {
'query': query,
'location': location,
'radius': radius,
'key': api_key
}
if next_page_token:
params['pagetoken'] = next_page_token
response = requests.get(url, params=params)
return response.json()
# Function to fetch wellness professionals
def get_wellness_professionals(location, api_key):
lat, lon = get_lat_lon(location, api_key)
if lat and lon:
places = get_places_data("wellness professional", f"{lat},{lon}", 10000, api_key)
if places and 'results' in places:
professionals = []
for place in places['results']:
name = place.get("name", "No name available")
rating = place.get("rating", "No rating available")
address = place.get("formatted_address", "No address available")
professionals.append({
"Name": name,
"Rating": rating,
"Address": address
})
professionals_df = pd.DataFrame(professionals)
return professionals_df
else:
return "No wellness professionals found nearby."
else:
return "Location not found. Please check the location."
# Gradio interface function to handle actions and outputs
def interface_function(message, action, location, history):
history = history or []
if action == "Chat":
# Use chat function if 'Chat' button is clicked
history, response = chat(message, history)
elif action == "Detect Emotion":
# Use emotion detection if 'Detect Emotion' button is clicked
emotion_msg, resource_df = detect_emotion(message)
response = emotion_msg
# Return the resource DataFrame as a table
return history, response, resource_df
elif action == "Wellness Resources":
# Use location to get wellness professionals if 'Wellness Resources' is clicked
if not location.strip():
response = "Please enter a valid location."
else:
professionals_df = get_wellness_professionals(location, api_key)
if isinstance(professionals_df, pd.DataFrame):
response = "Found wellness professionals nearby:"
return history, response, professionals_df
else:
response = professionals_df # If error message is returned
return history, response, None
return history, "Invalid action", None
# Gradio Interface with table outputs for emotion and wellness professionals
iface = gr.Interface(
fn=interface_function,
inputs=["text", "radio", "text", "state"], # Include state in the inputs
outputs=["text", "dataframe", "state"], # Add state to the outputs
live=True,
allow_flagging="never"
)
iface.launch(share=True)
|