File size: 11,297 Bytes
334ba26
 
7684892
334ba26
 
 
 
7684892
334ba26
 
5e7f7ee
 
334ba26
 
5e7f7ee
7684892
334ba26
 
ae282f5
334ba26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a4b0f
334ba26
674b44a
334ba26
 
 
 
 
 
 
 
 
 
 
 
 
674b44a
e6396eb
 
 
 
 
674b44a
e6396eb
 
 
674b44a
 
 
e6396eb
 
 
 
 
674b44a
 
 
e6396eb
 
 
 
 
674b44a
 
 
e6396eb
 
 
 
 
674b44a
 
e6396eb
 
 
 
 
674b44a
 
e6396eb
 
 
 
 
 
674b44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6396eb
674b44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6396eb
674b44a
 
 
 
2fd1c83
 
674b44a
2fd1c83
674b44a
 
 
 
 
2fd1c83
674b44a
 
 
 
 
 
 
 
 
 
 
 
 
2fd1c83
674b44a
e6396eb
2fd1c83
5b95047
 
674b44a
 
334ba26
613b05f
e6396eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function
def chat(message, history):
    history = history or []
    message = message.lower()
    
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"

    except Exception as e:
        response = f"An error occurred: {str(e)}"
    
    history.append((message, response))
    return history, response

# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

# Emotion detection setup
def load_emotion_model():
    tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
    return tokenizer, model

tokenizer_emotion, model_emotion = load_emotion_model()

# Emotion detection function with suggestions in plain English and resources in table
def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label']
    
    # Define emotion-specific message and resources
    if emotion == 'joy':
        emotion_msg = "You're feeling happy! Keep up the great mood!"
        resources = [
            {"subject": "Relaxation Techniques", "heading": "Mindful Breathing Meditation", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation", "video_url": "https://youtu.be/m1vaUGtyo-A"},
            {"subject": "Dealing with Stress", "heading": "Tips for Dealing with Anxiety", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/m1vaUGtyo-A"},
            {"subject": "Emotional Wellness Toolkit", "heading": "Emotional Wellness Resources", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/m1vaUGtyo-A"}
        ]
        
    elif emotion == 'anger':
        emotion_msg = "You're feeling angry. It's okay to feel this way. Let's try to calm down."
        resources = [
            {"subject": "Emotional Wellness Toolkit", "heading": "Managing Emotions", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/MIc299Flibs"},
            {"subject": "Stress Management Tips", "heading": "Managing Stress Effectively", "link": "https://www.health.harvard.edu/health-a-to-z", "video_url": "https://youtu.be/MIc299Flibs"},
            {"subject": "Dealing with Anger", "heading": "Strategies to Calm Anger", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/MIc299Flibs"}
        ]
        
    elif emotion == 'fear':
        emotion_msg = "You're feeling fearful. Take a moment to breathe and relax."
        resources = [
            {"subject": "Mindfulness Practices", "heading": "Breathing Techniques", "link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation", "video_url": "https://youtu.be/yGKKz185M5o"},
            {"subject": "Coping with Anxiety", "heading": "Overcoming Fear", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/yGKKz185M5o"},
            {"subject": "Emotional Wellness Toolkit", "heading": "Calming Your Mind", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/yGKKz185M5o"}
        ]
        
    elif emotion == 'sadness':
        emotion_msg = "You're feeling sad. It's okay to take a break."
        resources = [
            {"subject": "Emotional Wellness Toolkit", "heading": "Restoring Your Emotional Health", "link": "https://www.nih.gov/health-information/emotional-wellness-toolkit", "video_url": "https://youtu.be/-e-4Kx5px_I"},
            {"subject": "Dealing with Anxiety", "heading": "Coping Strategies for Stress", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/-e-4Kx5px_I"}
        ]
        
    elif emotion == 'surprise':
        emotion_msg = "You're feeling surprised. It's okay to feel neutral!"
        resources = [
            {"subject": "Managing Stress", "heading": "Relaxation Tips", "link": "https://www.health.harvard.edu/health-a-to-z", "video_url": "https://youtu.be/m1vaUGtyo-A"},
            {"subject": "Coping Strategies", "heading": "Dealing with Unexpected Events", "link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety", "video_url": "https://youtu.be/m1vaUGtyo-A"}
        ]
        
    else:
        emotion_msg = "Could not detect emotion."
        resources = []
    
    # Create a DataFrame for resources to display in table format
    resource_df = pd.DataFrame(resources)
    
    return emotion_msg, resource_df

# Google Geocoding API setup to convert city name to latitude/longitude
geocode_url = "https://maps.googleapis.com/maps/api/geocode/json"

def get_lat_lon(location, api_key):
    params = {
        "address": location,
        "key": api_key
    }
    response = requests.get(geocode_url, params=params)
    if response.status_code == 200:
        result = response.json()
        if result['status'] == 'OK':
            # Return the first result's latitude and longitude
            location = result['results'][0]['geometry']['location']
            return location['lat'], location['lng']
    return None, None

# Google Places API setup for wellness professionals
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
api_key = os.getenv("GOOGLE_API_KEY")  # Use environment variable for security

# Function to get places data using Google Places API
def get_places_data(query, location, radius, api_key, next_page_token=None):
    params = {
        'query': query,
        'location': location,
        'radius': radius,
        'key': api_key
    }
    if next_page_token:
        params['pagetoken'] = next_page_token
    
    response = requests.get(url, params=params)
    return response.json()

# Function to fetch wellness professionals
def get_wellness_professionals(location, api_key):
    lat, lon = get_lat_lon(location, api_key)
    
    if lat and lon:
        places = get_places_data("wellness professional", f"{lat},{lon}", 10000, api_key)
        
        if places and 'results' in places:
            professionals = []
            for place in places['results']:
                name = place.get("name", "No name available")
                rating = place.get("rating", "No rating available")
                address = place.get("formatted_address", "No address available")
                professionals.append({
                    "Name": name,
                    "Rating": rating,
                    "Address": address
                })
                
            professionals_df = pd.DataFrame(professionals)
            return professionals_df
        else:
            return "No wellness professionals found nearby."
    else:
        return "Location not found. Please check the location."

# Gradio interface function to handle actions and outputs
def interface_function(message, action, location, history):
    history = history or []
    
    if action == "Chat":
        # Use chat function if 'Chat' button is clicked
        history, response = chat(message, history)
    elif action == "Detect Emotion":
        # Use emotion detection if 'Detect Emotion' button is clicked
        emotion_msg, resource_df = detect_emotion(message)
        response = emotion_msg
        # Return the resource DataFrame as a table
        return history, response, resource_df
    elif action == "Wellness Resources":
        # Use location to get wellness professionals if 'Wellness Resources' is clicked
        if not location.strip():
            response = "Please enter a valid location."
        else:
            professionals_df = get_wellness_professionals(location, api_key)
            if isinstance(professionals_df, pd.DataFrame):
                response = "Found wellness professionals nearby:"
                return history, response, professionals_df
            else:
                response = professionals_df  # If error message is returned
                return history, response, None

    return history, "Invalid action", None

# Gradio Interface with table outputs for emotion and wellness professionals
iface = gr.Interface(
    fn=interface_function,
    inputs=["text", "radio", "text", "state"],  # Include state in the inputs
    outputs=["text", "dataframe", "state"],  # Add state to the outputs
    live=True,
    allow_flagging="never"
)

iface.launch(share=True)