File size: 11,282 Bytes
1aa6549
e623c13
 
334ba26
 
dacc7c0
e623c13
 
 
 
334ba26
 
4525308
e623c13
 
 
19503c4
e623c13
19503c4
 
 
e623c13
fa97be4
e623c13
334ba26
dacc7c0
e623c13
334ba26
 
e623c13
dacc7c0
 
 
 
e623c13
334ba26
e623c13
dacc7c0
e623c13
 
dacc7c0
e623c13
0e313c1
e623c13
0e313c1
 
 
 
e623c13
9164577
e623c13
dacc7c0
 
 
 
4525308
0e313c1
e623c13
334ba26
 
 
 
 
 
 
 
 
 
e623c13
dacc7c0
334ba26
 
e623c13
334ba26
e623c13
334ba26
 
 
e623c13
 
334ba26
 
 
 
e623c13
 
 
dacc7c0
19503c4
e623c13
674b44a
e623c13
 
4525308
e623c13
4525308
e623c13
 
 
 
 
 
 
4525308
 
e623c13
dacc7c0
e623c13
19503c4
 
 
 
4525308
e623c13
23325a3
e623c13
 
 
 
 
 
 
23325a3
 
 
e623c13
 
23325a3
 
 
 
 
 
e623c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4525308
 
 
 
ee50fd8
4525308
 
e623c13
 
 
4525308
19503c4
 
 
e623c13
 
 
 
 
 
 
 
 
19503c4
23325a3
e623c13
 
 
 
 
 
 
 
 
 
 
 
 
4525308
 
 
e623c13
 
4525308
 
e623c13
4525308
 
e623c13
 
 
 
 
 
 
 
 
 
 
 
 
19503c4
e623c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c74dd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import nltk
import numpy as np
import tflearn
import tensorflow as tf
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import requests
import csv
import time
import re
from bs4 import BeautifulSoup
import pandas as pd
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function
def chat(message, history):
    history = history or []
    message = message.lower()

    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"

    except Exception as e:
        response = f"An error occurred: {str(e)}"

    history.append((message, response))
    return history, history

# Function to send a request to Google Places API and fetch places data
def get_places_data(query, location, radius, api_key, next_page_token=None):
    params = {
        "query": query,
        "location": location,
        "radius": radius,
        "key": api_key
    }

    if next_page_token:
        params["pagetoken"] = next_page_token

    response = requests.get(url, params=params)

    if response.status_code == 200:
        return response.json()
    else:
        return None

# Function to fetch detailed information for a specific place using its place_id
def get_place_details(place_id, api_key):
    details_url = places_details_url
    params = {
        "place_id": place_id,
        "key": api_key
    }
    response = requests.get(details_url, params=params)

    if response.status_code == 200:
        details_data = response.json().get("result", {})
        return {
            "opening_hours": details_data.get("opening_hours", {}).get("weekday_text", "Not available"),
            "reviews": details_data.get("reviews", "Not available"),
            "phone_number": details_data.get("formatted_phone_number", "Not available"),
            "website": details_data.get("website", "Not available")
        }
    else:
        return {}

# Scrape website URL from Google Maps results (using Selenium)
def scrape_website_from_google_maps(place_name):
    chrome_options = Options()
    chrome_options.add_argument("--headless")
    chrome_options.add_argument("--no-sandbox")
    chrome_options.add_argument("--disable-dev-shm-usage")

    driver = webdriver.Chrome(options=chrome_options)
    search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}"
    driver.get(search_url)
    time.sleep(5)

    try:
        website_element = driver.find_element_by_xpath('//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]')
        website_url = website_element.get_attribute('href')
    except:
        website_url = "Not available"

    driver.quit()
    return website_url

# Scraping the website to extract phone number or email
def scrape_website_for_contact_info(website):
    phone_number = "Not available"
    email = "Not available"

    try:
        response = requests.get(website, timeout=5)
        soup = BeautifulSoup(response.content, 'html.parser')

        phone_match = re.search(r'\(?\+?[0-9]*\)?[0-9_\- \(\)]*', soup.get_text())
        if phone_match:
            phone_number = phone_match.group()

        email_match = re.search(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', soup.get_text())
        if email_match:
            email = email_match.group()

    except Exception as e:
        print(f"Error scraping website {website}: {e}")

    return phone_number, email

# Function to fetch all places data including pagination
def get_all_places(query, location, radius, api_key):
    all_results = []
    next_page_token = None
    while True:
        data = get_places_data(query, location, radius, api_key, next_page_token)
        if data:
            results = data.get('results', [])
            if not results:
                break

            for place in results:
                place_id = place.get("place_id")
                name = place.get("name")
                address = place.get("formatted_address")
                rating = place.get("rating", "Not available")
                business_status = place.get("business_status", "Not available")
                user_ratings_total = place.get("user_ratings_total", "Not available")
                website = place.get("website", "Not available")
                types = ", ".join(place.get("types", []))
                location = place.get("geometry", {}).get("location", {})
                latitude = location.get("lat", "Not available")
                longitude = location.get("lng", "Not available")

                details = get_place_details(place_id, api_key)
                phone_number = details.get("phone_number", "Not available")
                if phone_number == "Not available" and website != "Not available":
                    phone_number, email = scrape_website_for_contact_info(website)
                else:
                    email = "Not available"

                if website == "Not available":
                    website = scrape_website_from_google_maps(name)

                all_results.append([name, address, phone_number, rating, business_status,
                                    user_ratings_total, website, types, latitude, longitude,
                                    details.get("opening_hours", "Not available"),
                                    details.get("reviews", "Not available"), email])

            next_page_token = data.get('next_page_token')
            if not next_page_token:
                break

            time.sleep(2)
        else:
            break

    return all_results

# Function to save results to CSV file
def save_to_csv(data, filename):
    with open(filename, mode='w', newline='', encoding='utf-8') as file:
        writer = csv.writer(file)
        writer.writerow(["Name", "Address", "Phone", "Rating", "Business Status", "User Ratings Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"])
        writer.writerows(data)
    print(f"Data saved to {filename}")

# Main function to execute script
def main():
    google_places_data = get_all_places(query, location, radius, api_key)
    if google_places_data:
        save_to_csv(google_places_data, "wellness_professionals_hawaii.csv")
    else:
        print("No data found.")

# Gradio UI setup
with gr.Blocks() as demo:
    # Load pre-trained model and tokenizer
    @gr.cache_resource
    def load_model():
        tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
        model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
        return tokenizer, model

    tokenizer, model = load_model()

    # Display header
    gr.Markdown("# Emotion Detection and Well-Being Suggestions")

    # User input for text (emotion detection)
    user_input = gr.Textbox(lines=1, label="How are you feeling today?")
    emotion_output = gr.Textbox(label="Emotion Detected")

    # Model prediction
    def predict_emotion(text):
        pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
        result = pipe(text)
        emotion = result[0]['label']
        return emotion

    user_input.change(predict_emotion, inputs=user_input, outputs=emotion_output)

    # Chatbot functionality
    chatbot = gr.Chatbot(label="Chat")
    message_input = gr.Textbox(lines=1, label="Message")
    history_state = gr.State([])

    def chat(message, history):
        history = history or []
        message = message.lower()

        try:
            # Predict the tag
            results = model.predict([bag_of_words(message, words)])
            results_index = np.argmax(results)
            tag = labels[results_index]

            # Match tag with intent and choose a random response
            for tg in data["intents"]:
                if tg['tag'] == tag:
                    responses = tg['responses']
                    response = random.choice(responses)
                    break
            else:
                response = "I'm sorry, I didn't understand that. Could you please rephrase?"

        except Exception as e:
            response = f"An error occurred: {str(e)}"

        history.append((message, response))
        return history, history

    message_input.submit(chat, inputs=[message_input, history_state], outputs=[chatbot, history_state])

    # Button to fetch wellness professionals data
    fetch_button = gr.Button("Fetch Wellness Professionals Data")
    data_output = gr.File(label="Download Data")

    def fetch_data():
        all_results = get_all_places(query, location, radius, api_key)
        if all_results:
            df = pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User Ratings Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"])
            csv_file = df.to_csv(index=False)
            return csv_file
        else:
            return "No data found."

    fetch_button.click(fetch_data, inputs=None, outputs=data_output)

# Launch Gradio interface
demo.launch()