Spaces:
Sleeping
Sleeping
File size: 9,592 Bytes
1aa6549 0bbb821 d5331b4 4525308 e623c13 19503c4 e623c13 19503c4 e623c13 2ae19d7 97f0957 2ae19d7 fd60b30 bdc8fc1 ed12172 c69efb6 fa97be4 e623c13 334ba26 dacc7c0 9b1c27f e623c13 334ba26 e623c13 dacc7c0 e623c13 334ba26 e623c13 dacc7c0 e623c13 dacc7c0 e623c13 0e313c1 c69efb6 d5331b4 c69efb6 d5331b4 c69efb6 d5331b4 c69efb6 97f0957 c69efb6 d5331b4 c69efb6 d5331b4 c69efb6 e623c13 c69efb6 e623c13 23325a3 c69efb6 4525308 c69efb6 e623c13 c69efb6 97f0957 c69efb6 e623c13 c69efb6 e623c13 d5331b4 97f0957 e623c13 d5331b4 e623c13 c69efb6 e623c13 97f0957 d5331b4 c69efb6 d5331b4 c69efb6 d5331b4 c69efb6 d5331b4 c69efb6 d5331b4 c69efb6 d5331b4 97f0957 d5331b4 c69efb6 d5331b4 e623c13 97f0957 e623c13 d5331b4 e623c13 e91aed5 0bbb821 e623c13 e91aed5 e623c13 d5331b4 e623c13 97f0957 c69efb6 97f0957 c69efb6 9b1c27f e623c13 d5331b4 97f0957 d5331b4 c69efb6 d5331b4 97f0957 d5331b4 e623c13 c69efb6 e623c13 c69efb6 e623c13 53595f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
import requests
import csv
import time
import re
from bs4 import BeautifulSoup
import pandas as pd
import chromedriver_autoinstaller
import os
import nltk
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tflearn
import tensorflow as tf
import json
import pickle
import random
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Import LancasterStemmer from nltk.stem
from nltk.stem import LancasterStemmer
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could be could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_pipeline = pipeline("sentiment-analysis")
def predict_sentiment(text):
result = sentiment_pipeline(text)[0]
return result['label']
# Emotion detection
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_pipeline = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
def predict_emotion(text):
result = emotion_pipeline(text)[0]
return result['label']
# Fetching nearby health professionals
google_places_url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
google_geocoding_url = "https://maps.googleapis.com/maps/api/geocode/json"
def get_places_data(query, location, radius, api_key):
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
response = requests.get(google_places_url, params=params)
return response.json()
def get_place_details(place_id, api_key):
details_url = f"https://maps.googleapis.com/maps/api/place/details/json?place_id={place_id}&fields=name,rating,formatted_phone_number&key={api_key}"
response = requests.get(details_url)
return response.json()
def fetch_nearby_health_professionals(location):
api_key = "GOOGLE_API_KEY" # Replace with your actual Google API key
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
radius = 50000 # 50 km radius
response = get_places_data(query, location, radius, api_key)
results = response.get('results', [])
data = []
for place in results:
place_id = place['place_id']
place_details = get_place_details(place_id, api_key)
name = place_details.get('result', {}).get('name', 'N/A')
rating = place_details.get('result', {}).get('rating', 'N/A')
phone_number = place_details.get('result', {}).get('formatted_phone_number', 'N/A')
data.append([name, rating, phone_number])
return pd.DataFrame(data, columns=['Name', 'Rating', 'Phone Number'])
# Save results to CSV
def save_to_csv(data, filename):
data.to_csv(filename, index=False)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Mental Health Assistant")
# User input for text (emotion detection)
user_input_emotion = gr.Textbox(lines=1, label="How are you feeling today?")
submit_emotion = gr.Button("Submit")
# Model prediction for emotion detection
def predict_emotion(text):
return predict_emotion(text)
# Show suggestions based on the detected emotion
def show_suggestions(emotion):
if emotion == 'joy':
return "You're feeling happy! Keep up the great mood!"
elif emotion == 'anger':
return "You're feeling angry. It's okay to feel this way. Let's try to calm down."
elif emotion == 'fear':
return "You're feeling fearful. Take a moment to breathe and relax."
elif emotion == 'sadness':
return "You're feeling sad. It's okay to take a break."
elif emotion == 'surprise':
return "You're feeling surprised. It's okay to feel neutral!"
emotion_output = gr.Textbox(label="Emotion Detected")
submit_emotion.click(predict_emotion, inputs=user_input_emotion, outputs=emotion_output)
# Button for summary
def show_summary(emotion):
return f"Emotion Detected: {emotion}"
summary_button = gr.Button("Show Summary")
summary_output = gr.Textbox(label="Summary")
summary_button.click(show_summary, inputs=emotion_output, outputs=summary_output)
# Chatbot functionality
chatbot = gr.Chatbot(label="Chat")
message_input = gr.Textbox(lines=1, label="Message")
submit_chat = gr.Button("Send")
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
submit_chat.click(chat, inputs=[message_input, gr.State()], outputs=[chatbot, gr.State()])
# Location input for fetching nearby health professionals
location_input = gr.Textbox(lines=1, label="Enter your location (plain English):")
submit_location = gr.Button("Find Nearby Health Professionals")
# Fetch and display nearby health professionals
def fetch_nearby_health_professionals(location):
df = fetch_nearby_health_professionals(location)
return df
nearby_health_professionals_table = gr.Dataframe(headers=["Name", "Rating", "Phone Number"])
submit_location.click(fetch_nearby_health_professionals, inputs=location_input, outputs=nearby_health_professionals_table)
# User input for text (sentiment analysis)
user_input_sentiment = gr.Textbox(lines=1, label="Enter text to analyze sentiment:")
submit_sentiment = gr.Button("Submit")
# Prediction button for sentiment analysis
def predict_sentiment(text):
return predict_sentiment(text)
sentiment_output = gr.Textbox(label="Predicted Sentiment")
submit_sentiment.click(predict_sentiment, inputs=user_input_sentiment, outputs=sentiment_output)
# Button to fetch wellness professionals data
fetch_button = gr.Button("Fetch Wellness Professionals Data")
data_output = gr.Dataframe(headers=["Name", "Rating", "Phone Number"])
def fetch_data():
df = fetch_nearby_health_professionals("Hawaii")
return df
fetch_button.click(fetch_data, inputs=None, outputs=data_output)
# Launch Gradio interface
demo.launch() |