File size: 7,780 Bytes
1aa6549
334ba26
 
dacc7c0
4525308
334ba26
 
19503c4
4525308
 
23325a3
19503c4
 
 
 
fa97be4
ee50fd8
334ba26
dacc7c0
ee50fd8
19d71b0
19503c4
 
 
 
 
 
 
ee50fd8
334ba26
 
dacc7c0
 
 
 
19503c4
334ba26
dacc7c0
ee50fd8
 
dacc7c0
19503c4
0e313c1
 
 
 
 
9164577
dacc7c0
ee50fd8
dacc7c0
 
 
4525308
0e313c1
334ba26
 
 
 
 
 
 
 
 
 
dacc7c0
334ba26
 
 
 
 
 
 
 
 
 
ee50fd8
334ba26
ee50fd8
 
ebca5ff
 
ee50fd8
19503c4
dacc7c0
 
19503c4
 
ee50fd8
19503c4
ee50fd8
 
19503c4
 
 
dacc7c0
ee50fd8
19503c4
ee50fd8
19503c4
674b44a
ee50fd8
dacc7c0
ee50fd8
19503c4
4525308
ee50fd8
4525308
ee50fd8
4525308
 
dacc7c0
19503c4
 
 
 
 
4525308
23325a3
19503c4
23325a3
 
 
 
 
 
 
 
 
 
4525308
 
 
 
ee50fd8
4525308
 
 
19503c4
 
 
 
23325a3
19503c4
23325a3
4525308
 
 
 
 
 
 
ee50fd8
 
19503c4
ee50fd8
 
 
 
 
 
 
 
 
 
23325a3
19503c4
 
 
 
 
 
4525308
19503c4
4525308
ee50fd8
dacc7c0
0e313c1
dacc7c0
19503c4
 
ee50fd8
0bf96c0
 
456391b
 
 
 
 
19503c4
0bf96c0
456391b
 
19503c4
ee50fd8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import gradio as gr
import nltk
import numpy as np
import tflearn
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import requests
import pandas as pd
import os
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller

# Ensure NLTK resources are downloaded
nltk.download('punkt')

# Constants
GOOGLE_MAPS_API_KEY = os.environ.get("GOOGLE_API_KEY")  # Get API key from environment variable
if not GOOGLE_MAPS_API_KEY:
    raise ValueError("Error: GOOGLE_MAPS_API_KEY environment variable not set.")

url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"

# Chatbot
stemmer = LancasterStemmer()

try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found.")

try:
    with open("data.pickle", "rb") as file:
        words, labels, training, output = pickle.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found.")

net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")

model = tflearn.DNN(net)

try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def chat(message, history):
    history = history or []
    message = message.lower()
    try:
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
        history.append((message, response))
    except Exception as e:
        response = "I'm sorry, I didn't understand that. Could you please rephrase?"
        history.append((message, response))
    return history, history

# Sentiment Analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(text):
    try:
        inputs = tokenizer(text, return_tensors="pt")
        with torch.no_grad():
            logits = model_sentiment(**inputs).logits
        sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(logits)]
        return f"**Predicted Sentiment:** {sentiment}"
    except Exception as e:
        return f"Error analyzing sentiment: {str(e)}"

# Emotion Detection
def detect_emotion(text):
    # Implement your own emotion detection logic
    return "Emotion detection not implemented"

# Suggestion Generation
def provide_suggestions(emotion):
    # Implement your own suggestion generation logic
    return pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])

# Google Places API Functions
def get_places_data(query, location, radius, api_key, next_page_token=None):
    params = {"query": query, "location": location, "radius": radius, "key": api_key}
    if next_page_token:
        params["pagetoken"] = next_page_token
    response = requests.get(url, params=params)
    if response.status_code == 200:
        return response.json()
    else:
        print(f"Error: {response.status_code} - {response.text}")
        return None

def get_place_details(place_id, api_key):
    params = {"place_id": place_id, "key": api_key}
    response = requests.get(places_details_url, params=params)
    if response.status_code == 200:
        details_data = response.json().get("result", {})
        return {
            "phone_number": details_data.get("formatted_phone_number", "Not available"),
            "website": details_data.get("website", "Not available")
        }
    else:
        return {}

def get_all_places(query, location, radius, api_key):
    all_results = []
    next_page_token = None
    while True:
        data = get_places_data(query, location, radius, api_key, next_page_token)
        if data:
            results = data.get('results', [])
            for place in results:
                place_id = place.get("place_id")
                name = place.get("name")
                address = place.get("formatted_address")
                details = get_place_details(place_id, api_key)
                phone_number = details.get("phone_number", "Not available")
                website = details.get("website", "Not available")
                all_results.append([name, address, phone_number, website])
            next_page_token = data.get('next_page_token')
            if not next_page_token:
                break
        else:
            break
    return all_results

# Gradio Interface
def gradio_interface(message, location, state):
    history = state or []
    if message:
        history, _ = chat(message, history)
        sentiment = analyze_sentiment(message)
        emotion = detect_emotion(message)
        suggestions = provide_suggestions(emotion)
        if location:
            try:
                wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
            except Exception as e:
                wellness_results = pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
        else:
            wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
    else:
        sentiment = ""
        emotion = ""
        suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
        wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])

    return history, sentiment, emotion, suggestions, wellness_results, history

gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
        gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location (optional)"),
        gr.State(),
        gr.Button("Send")
    ],
    outputs=[
        gr.Chatbot(label="Chatbot Responses"),
        gr.Textbox(label="Sentiment Analysis"),
        gr.Textbox(label="Emotion Detected"),
        gr.DataFrame(label="Suggested Articles & Videos"),
        gr.DataFrame(label="Nearby Wellness Professionals"),
        gr.State()
    ],
    live=True,
    title="Mental Health Chatbot with Wellness Professional Search",
    description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals. Interact with the chatbot first, then enter a location to search."
).launch(debug=True, share=True)