Spaces:
Sleeping
Sleeping
File size: 9,066 Bytes
334ba26 7684892 334ba26 7684892 334ba26 ebca5ff 5e7f7ee 334ba26 5e7f7ee ff908a7 e859494 fa97be4 7684892 334ba26 ae282f5 334ba26 ff908a7 334ba26 ff908a7 334ba26 ff908a7 334ba26 ff908a7 334ba26 ff908a7 334ba26 48a4b0f 334ba26 ebca5ff 334ba26 ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff 674b44a ebca5ff 674b44a ff908a7 674b44a ff908a7 674b44a ff908a7 674b44a d7c7798 ebca5ff 674b44a ebca5ff 674b44a ebca5ff fa97be4 ebca5ff fa97be4 e6396eb fa97be4 ff908a7 fa97be4 ebca5ff d7c7798 fa97be4 613b05f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import folium
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
from functools import lru_cache
import pandas as pd
import tensorflow as tf # Added to enable resource variables
# Enable resource variables in TensorFlow to avoid deprecated warnings
tf.compat.v1.enable_resource_variables()
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
def load_intents(file_path):
with open(file_path) as file:
return json.load(file)
# Load preprocessed data from pickle
def load_preprocessed_data(file_path):
with open(file_path, "rb") as f:
return pickle.load(f)
# Build the model structure
def build_model(words, labels, training, output):
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
return tflearn.DNN(net)
# Load the trained model
def load_model(model_path, net):
model = tflearn.DNN(net)
model.load(model_path)
return model
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history, words, labels, model):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Emotion detection function with suggestions
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
suggestions = []
video_link = ""
# Provide suggestions based on the detected emotion
if emotion == 'joy':
suggestions = [
("Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
elif emotion == 'anger':
suggestions = [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/MIc299Flibs"
elif emotion == 'fear':
suggestions = [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")
]
video_link = "Watch on YouTube: https://youtu.be/yGKKz185M5o"
elif emotion == 'sadness':
suggestions = [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/-e-4Kx5px_I"
elif emotion == 'surprise':
suggestions = [
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
return emotion, suggestions, video_link
# Google Geocoding API setup to convert city name to latitude/longitude
geocode_url = "https://maps.googleapis.com/maps/api/geocode/json"
@lru_cache(maxsize=128)
def get_lat_lon(location, api_key):
params = {
"address": location,
"key": api_key
}
try:
response = requests.get(geocode_url, params=params)
response.raise_for_status()
result = response.json()
if result['status'] == 'OK':
location = result['results'][0]['geometry']['location']
return location['lat'], location['lng']
else:
return None, None
except requests.RequestException as e:
print(f"Error fetching coordinates: {e}")
return None, None
# Function to fetch places data using Google Places API
def get_places_data(query, location, radius, api_key):
places_url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
try:
response = requests.get(places_url, params=params)
response.raise_for_status()
return response.json()
except requests.RequestException as e:
print(f"Error fetching places data: {e}")
return None
# Get wellness professionals
def get_wellness_professionals(location, api_key):
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
radius = 50000 # 50 km radius
lat, lon = get_lat_lon(location, api_key)
if lat is None or lon is None:
return "Unable to find coordinates for the given location."
# Using Google Places API to fetch wellness professionals
data = get_places_data(query, f"{lat},{lon}", radius, api_key)
if data:
results = data.get('results', [])
wellness_data = []
for place in results:
name = place.get("name")
address = place.get("formatted_address")
latitude = place.get("geometry", {}).get("location", {}).get("lat")
longitude = place.get("geometry", {}).get("location", {}).get("lng")
wellness_data.append([name, address, latitude, longitude])
return wellness_data
return []
# Function to generate a map with wellness professionals
def generate_map(wellness_data):
map_center = [23.685, 90.3563] # Default center for Bangladesh (you can adjust this)
m = folium.Map(location=map_center, zoom_start=12)
for place in wellness_data:
name, address, lat, lon = place
folium.Marker([lat, lon], popup=f"{name}\n{address}").add_to(m)
return m
# Initialize the necessary files
data = load_intents("intents.json")
words, labels, training, output = load_preprocessed_data("data.pickle")
# Build the model
model = build_model(words, labels, training, output)
model = load_model("model.tflearn", model)
# Gradio interface
def chatbot_interface(message, history):
return chat(message, history, words, labels, model)
# Example usage with Gradio UI
gr.Interface(fn=chatbot_interface, inputs=["text", "state"], outputs=["chatbot", "state"]).launch()
|