File size: 10,473 Bytes
d3aead7
7684892
 
 
 
 
 
48a4b0f
7684892
 
48a4b0f
7684892
540646a
d3aead7
7684892
 
 
 
 
 
 
 
48a4b0f
 
7684892
48a4b0f
7684892
 
 
48a4b0f
 
7684892
48a4b0f
7684892
 
 
 
 
 
 
 
 
 
 
48a4b0f
7684892
48a4b0f
7684892
 
 
48a4b0f
 
 
 
 
 
 
 
7684892
 
48a4b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae282f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a4b0f
 
ae282f5
48a4b0f
 
 
 
 
7684892
0aa146d
 
 
 
48a4b0f
 
11f26d3
 
fce43ab
48a4b0f
 
 
 
 
 
ae282f5
 
 
 
 
 
 
 
 
48a4b0f
ae282f5
d3aead7
48a4b0f
0aa146d
 
 
ae282f5
48a4b0f
 
 
 
ae282f5
 
48a4b0f
 
ae282f5
48a4b0f
 
 
 
d3aead7
ae282f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fce43ab
 
 
48a4b0f
fce43ab
 
 
 
ba98e87
fce43ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a4b0f
fce43ab
48a4b0f
fce43ab
 
 
 
 
48a4b0f
fce43ab
613b05f
ae282f5
fce43ab
613b05f
 
 
 
fce43ab
 
 
613b05f
 
 
fce43ab
 
 
613b05f
fce43ab
613b05f
fce43ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
import geocoder  # Use geocoder to get latitude/longitude from city

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function
def chat(message, history, state):
    history = history or []
    message = message.lower()
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]
        
        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"

        # Add emoticons to the response
        emoticon_dict = {
            "joy": "😊",
            "anger": "😑",
            "fear": "😨",
            "sadness": "πŸ˜”",
            "surprise": "😲",
            "neutral": "😐"
        }

        # Add the emotion-related emoticon to the response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                emotion = tg.get('emotion', 'neutral')  # Default to neutral if no emotion is defined
                response = f"{response} {emoticon_dict.get(emotion, '😐')}"
                break
        
        history.append((message, response))

        # Transition to the next feature (sentiment analysis)
        state['step'] = 2  # Move to sentiment analysis
    except Exception as e:
        response = f"An error occurred: {str(e)}"

    return history, history, state

# Load pre-trained model and tokenizer for sentiment analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

# Function for sentiment analysis
def analyze_sentiment(text, state):
    if state is None:
        state = {'step': 1}
        
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = sentiment_model(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
    
    # Add emoticon to sentiment
    sentiment_emojis = {
        "Negative": "😞",
        "Neutral": "😐",
        "Positive": "😊"
    }
    sentiment_with_emoji = f"{sentiment} {sentiment_emojis.get(sentiment, '😐')}"
    
    # Transition to emotion detection
    state['step'] = 3  # Move to emotion detection and suggestions
    return sentiment_with_emoji, state

# Load pre-trained model and tokenizer for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Function for emotion detection and suggestions
def detect_emotion(text, state):
    pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
    result = pipe(text)
    emotion = result[0]['label']
    
    # Provide suggestions based on detected emotion
    suggestions = provide_suggestions(emotion)
    
    # Transition to wellness professional search
    state['step'] = 4  # Move to wellness professional search
    return emotion, suggestions, state

# Suggestions based on detected emotion
def provide_suggestions(emotion):
    resources = {
        'joy': {
            'message': "You're feeling happy! Keep up the great mood! 😊",
            'articles': [
                "[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
                "[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
            ],
            'videos': "[Watch Relaxation Video](https://youtu.be/m1vaUGtyo-A)"
        },
        'anger': {
            'message': "You're feeling angry. It's okay to feel this way. Let's try to calm down. 😑",
            'articles': [
                "[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
                "[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)"
            ],
            'videos': "[Watch Anger Management Video](https://youtu.be/MIc299Flibs)"
        },
        'fear': {
            'message': "You're feeling fearful. Take a moment to breathe and relax. 😨",
            'articles': [
                "[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
                "[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
            ],
            'videos': "[Watch Coping Video](https://youtu.be/yGKKz185M5o)"
        },
        'sadness': {
            'message': "You're feeling sad. It's okay to take a break. πŸ˜”",
            'articles': [
                "[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
                "[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
            ],
            'videos': "[Watch Sadness Relief Video](https://youtu.be/-e-4Kx5px_I)"
        },
        'surprise': {
            'message': "You're feeling surprised. It's okay to feel neutral! 😲",
            'articles': [
                "[Managing Stress](https://www.health.harvard.edu/health-a-to-z)",
                "[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
            ],
            'videos': "[Watch Stress Relief Video](https://youtu.be/m1vaUGtyo-A)"
        }
    }
    
    # Ensure we return a message even if no articles/videos are found
    return resources.get(emotion, {'message': "Stay calm. πŸ™‚", 'articles': ["[General Wellbeing Tips](https://www.helpguide.org)"], 'videos': []})

# Function to fetch wellness professionals based on location
def get_wellness_professionals(location):
    # Use Geocoder to get latitude/longitude from city
    g = geocoder.osm(location)
    if g.ok:
        latitude, longitude = g.latlng
        google_api_url = f"https://maps.googleapis.com/maps/api/place/nearbysearch/json?location={latitude},{longitude}&radius=5000&type=health&key=YOUR_GOOGLE_API_KEY"
        
        response = requests.get(google_api_url)
        data = response.json()
        
        professionals = []
        if 'results' in data:
            for place in data['results']:
                name = place['name']
                address = place.get('vicinity', 'No address available')
                url = place.get('website', '#')
                professionals.append(f"**{name}** - {address} - [Visit Website]({url})")
        
        if not professionals:
            professionals.append("No wellness professionals found nearby.")
        
        return "\n".join(professionals)
    else:
        return "Couldn't fetch your location. Please make sure you entered a valid location."

# Function to ask for location and provide wellness professionals
def search_wellness_professionals(location, state):
    professionals = get_wellness_professionals(location)
    state['step'] = 5  # Move to the next step
    return professionals, state

# Create the UI with location input for wellness professionals
def create_ui():
    with gr.Blocks() as demo:
        state = gr.State({'step': 1})
        chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
        message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
        sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
        emotion_output = gr.Textbox(placeholder="Detected emotion", label="Emotion")
        wellness_output = gr.Textbox(placeholder="Wellness professionals nearby", label="Wellness Professionals")
        location_input = gr.Textbox(placeholder="Enter your city for wellness professionals", label="Location")

        message_input.submit(chat, [message_input, chatbot, state], [chatbot, chatbot, state])
        message_input.submit(analyze_sentiment, [message_input, state], [sentiment_output, state])
        sentiment_output.submit(detect_emotion, [sentiment_output, state], [emotion_output, wellness_output, state])
        location_input.submit(search_wellness_professionals, [location_input, state], [wellness_output, state])

    return demo

# Launch Gradio interface
demo = create_ui()
demo.launch(debug=True)