Spaces:
Sleeping
Sleeping
File size: 10,633 Bytes
334ba26 7684892 334ba26 7684892 334ba26 ebca5ff 5e7f7ee 334ba26 5e7f7ee ff908a7 7684892 334ba26 ae282f5 334ba26 ff908a7 334ba26 ff908a7 334ba26 ff908a7 334ba26 ff908a7 334ba26 ff908a7 334ba26 48a4b0f 334ba26 ebca5ff 334ba26 ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff e6396eb ebca5ff 674b44a ebca5ff 674b44a ff908a7 674b44a ff908a7 674b44a ff908a7 674b44a ebca5ff 674b44a ebca5ff 674b44a ebca5ff e6396eb ebca5ff ff908a7 674b44a ebca5ff ff908a7 ebca5ff ff908a7 ebca5ff 334ba26 613b05f ebca5ff ff908a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
import folium
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
from functools import lru_cache
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
def load_intents(file_path):
with open(file_path) as file:
return json.load(file)
# Load preprocessed data from pickle
def load_preprocessed_data(file_path):
with open(file_path, "rb") as f:
return pickle.load(f)
# Build the model structure
def build_model(words, labels, training, output):
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
return tflearn.DNN(net)
# Load the trained model
def load_model(model_path, net):
model = tflearn.DNN(net)
model.load(model_path)
return model
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history, words, labels, model):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Emotion detection function with suggestions
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
suggestions = []
video_link = ""
# Provide suggestions based on the detected emotion
if emotion == 'joy':
suggestions = [
("Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
elif emotion == 'anger':
suggestions = [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/MIc299Flibs"
elif emotion == 'fear':
suggestions = [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")
]
video_link = "Watch on YouTube: https://youtu.be/yGKKz185M5o"
elif emotion == 'sadness':
suggestions = [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/-e-4Kx5px_I"
elif emotion == 'surprise':
suggestions = [
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
return emotion, suggestions, video_link
# Google Geocoding API setup to convert city name to latitude/longitude
geocode_url = "https://maps.googleapis.com/maps/api/geocode/json"
@lru_cache(maxsize=128)
def get_lat_lon(location, api_key):
params = {
"address": location,
"key": api_key
}
try:
response = requests.get(geocode_url, params=params)
response.raise_for_status()
result = response.json()
if result['status'] == 'OK':
location = result['results'][0]['geometry']['location']
return location['lat'], location['lng']
else:
return None, None
except requests.RequestException as e:
print(f"Error fetching coordinates: {e}")
return None, None
# Get wellness professionals
def get_wellness_professionals(location, api_key):
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
radius = 50000 # 50 km radius
lat, lon = get_lat_lon(location, api_key)
if lat is None or lon is None:
return "Unable to find coordinates for the given location."
# Using Google Places API to fetch wellness professionals
data = get_places_data(query, f"{lat},{lon}", radius, api_key)
if data:
results = data.get('results', [])
wellness_data = []
for place in results:
name = place.get("name")
address = place.get("formatted_address")
latitude = place.get("geometry", {}).get("location", {}).get("lat")
longitude = place.get("geometry", {}).get("location", {}).get("lng")
wellness_data.append([name, address, latitude, longitude])
return wellness_data
return []
# Function to generate a map with wellness professionals
def generate_map(wellness_data):
map_center = [23.685, 90.3563] # Default center for Bangladesh (you can adjust this)
m = folium.Map(location=map_center, zoom_start=12)
for place in wellness_data:
name, address, lat, lon = place
folium.Marker(
location=[lat, lon],
popup=f"<b>{name}</b><br>{address}",
icon=folium.Icon(color='blue', icon='info-sign')
).add_to(m)
# Save map as an HTML file
map_file = "wellness_map.html"
m.save(map_file)
# Return the HTML file path to be embedded in Gradio
return map_file
# Gradio interface setup for user interaction
def user_interface(message, location, history, api_key, words, labels, model):
history, history = chat(message, history, words, labels, model)
# Sentiment analysis
inputs = tokenizer_sentiment(message, return_tensors="pt")
outputs = model_sentiment(**inputs)
sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()]
# Emotion detection
emotion, resources, video_link = detect_emotion(message)
# Get wellness professionals
wellness_data = get_wellness_professionals(location, api_key)
# Generate the map
map_file = generate_map(wellness_data)
# Create a DataFrame for the suggestions
suggestions_df = pd.DataFrame(resources, columns=["Subject", "Article URL"])
suggestions_df["Video URL"] = video_link # Add video URL column
return history, history, sentiment, emotion, suggestions_df.to_html(escape=False), map_file
# Load data and model
try:
data = load_intents("intents.json")
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
try:
words, labels, training, output = load_preprocessed_data("data.pickle")
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
net = build_model(words, labels, training, output)
try:
model = load_model("MentalHealthChatBotmodel.tflearn", net)
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Gradio chatbot interface
chatbot = gr.Chatbot(label="Mental Health Chatbot")
location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8")
# Gradio interface definition
demo = gr.Interface(
fn=lambda message, location, history, api_key: user_interface(message, location, history, api_key, words, labels, model),
inputs=[
gr.Textbox(label="Message"),
location_input,
"state",
"text" # API Key input
],
outputs=[
chatbot,
"state",
gr.Textbox(label="Sentiment"),
gr.Textbox(label="Emotion"),
gr.HTML(label="Resources"),
gr.HTML(label="Map")
],
allow_flagging="never",
title="Mental Health & Well-being Assistant"
)
# Launch Gradio interface
if __name__ == "__main__":
demo.launch() |