Testing / app.py
DreamStream-1's picture
Update app.py
3631cca verified
raw
history blame
9.04 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow GPU usage and warnings
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Bag of Words Helper Function for Chatbot
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Function
def chatbot(message, history):
"""Generate a chatbot response and append to the chat history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
# Sentiment Analysis
def analyze_sentiment(user_input):
"""Analyze sentiment from user input."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Emotion Detection
def detect_emotion(user_input):
"""Detect user emotion with an emoji."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label'].lower()
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral"
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
# Generate Suggestions for Emotion
def generate_suggestions(emotion):
"""Return suggestions for the detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"anger": [
["Emotional Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Calming Activities", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness Practices", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Stress Management", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu/" target="_blank">Visit</a>'],
["Relaxation Help", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
]
}
return suggestions.get(emotion.lower(), [["No suggestions are available.", ""]])
# Search for Nearby Professionals and Generate Map
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals and display a map."""
try:
if not location or not query:
return ["Please provide a valid location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found for the given location."], ""
except googlemaps.exceptions.HTTPError as e:
return [f"Google Maps API Error: {str(e)}"], ""
except Exception as e:
return [f"An error occurred: {str(e)}"], ""
# Main App Logic
def app_function(user_input, location, query, history):
chatbot_history, response = chatbot(user_input, history)
sentiment = analyze_sentiment(user_input)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS for Dark Theme and Gradient Buttons
custom_css = """
body {
background: linear-gradient(135deg, #000, #ff5722);
font-family: 'Roboto', sans-serif;
color: white;
}
button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
border: 0;
border-radius: 8px;
padding: 12px 20px;
cursor: pointer;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
}
textarea, input {
background: black !important;
color: white !important;
padding: 12px;
border: 1px solid #ff5722 !important;
border-radius: 8px;
}
.gr-dataframe {
background-color: black !important;
color: white !important;
overflow-y: scroll;
height: 300px;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1 style='text-align: center;'>🌟 Well-Being Companion</h1>")
gr.HTML("<h3 style='text-align: center;'>Empowering Your Mental Health Journey πŸ’š</h3>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Type your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist, doctor")
chatbot_history = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestions_output = gr.DataFrame(headers=["Title", "Link"], label="Suggestions")
map_html_output = gr.HTML(label="Map of Nearby Health Professionals")
professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_message, location, query, chatbot_history],
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_output, professionals_output, map_html_output]
)
app.launch()