Spaces:
Sleeping
Sleeping
File size: 9,035 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 3631cca 274d1f4 d30f6a2 dacc7c0 3631cca 334ba26 3631cca 494aa89 6858546 334ba26 494aa89 0e313c1 90f35d6 4e61093 274d1f4 6858546 c69efb6 3631cca 9e5813b 3631cca 4e61093 3631cca 936af04 4e61093 4184e5e 6858546 936af04 4525308 3631cca 274d1f4 3631cca 4184e5e d9bd34f 4e61093 6858546 4184e5e d9bd34f 11851f1 6858546 936af04 3631cca f0734be 3631cca 274d1f4 6858546 274d1f4 3631cca 274d1f4 3631cca 274d1f4 8b34069 90f35d6 3631cca 274d1f4 3631cca 864d91e 3631cca 658d2e0 3631cca 658d2e0 3631cca d9bd34f 3631cca d9bd34f 3631cca d9bd34f 3631cca 8b34069 37c8a73 3631cca 6858546 3631cca 4e61093 3631cca d9bd34f 3631cca 90f35d6 d9bd34f 1949203 90f35d6 4568d77 3631cca bdb69d5 3631cca bdb69d5 3631cca bdb69d5 3631cca 8b34069 3631cca 8b34069 3631cca 6858546 3631cca 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Suppress TensorFlow GPU usage and warnings
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()
# Load chatbot training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Bag of Words Helper Function for Chatbot
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Function
def chatbot(message, history):
"""Generate a chatbot response and append to the chat history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
# Sentiment Analysis
def analyze_sentiment(user_input):
"""Analyze sentiment from user input."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
# Emotion Detection
def detect_emotion(user_input):
"""Detect user emotion with an emoji."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label'].lower()
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral"
}
return emotion_map.get(emotion, "Unknown Emotion π€")
# Generate Suggestions for Emotion
def generate_suggestions(emotion):
"""Return suggestions for the detected emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
],
"anger": [
["Emotional Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Calming Activities", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety" target="_blank">Visit</a>'],
["Mindfulness Practices", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Stress Management", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu/" target="_blank">Visit</a>'],
["Relaxation Help", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
]
}
return suggestions.get(emotion.lower(), [["No suggestions are available.", ""]])
# Search for Nearby Professionals and Generate Map
def get_health_professionals_and_map(location, query):
"""Search nearby healthcare professionals and display a map."""
try:
if not location or not query:
return ["Please provide a valid location and query."], ""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
professionals = []
map_ = folium.Map(location=(lat, lng), zoom_start=13)
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', 'No address available')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=f"{place['name']}"
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found for the given location."], ""
except googlemaps.exceptions.HTTPError as e:
return [f"Google Maps API Error: {str(e)}"], ""
except Exception as e:
return [f"An error occurred: {str(e)}"], ""
# Main App Logic
def app_function(user_input, location, query, history):
chatbot_history, response = chatbot(user_input, history)
sentiment = analyze_sentiment(user_input)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Custom CSS for Dark Theme and Gradient Buttons
custom_css = """
body {
background: linear-gradient(135deg, #000, #ff5722);
font-family: 'Roboto', sans-serif;
color: white;
}
button {
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
border: 0;
border-radius: 8px;
padding: 12px 20px;
cursor: pointer;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
}
button:hover {
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
}
textarea, input {
background: black !important;
color: white !important;
padding: 12px;
border: 1px solid #ff5722 !important;
border-radius: 8px;
}
.gr-dataframe {
background-color: black !important;
color: white !important;
overflow-y: scroll;
height: 300px;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1 style='text-align: center;'>π Well-Being Companion</h1>")
gr.HTML("<h3 style='text-align: center;'>Empowering Your Mental Health Journey π</h3>")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Type your message...")
location = gr.Textbox(label="Your Location", placeholder="Enter your location...")
query = gr.Textbox(label="Search Query", placeholder="e.g., therapist, doctor")
chatbot_history = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Detected Sentiment")
emotion_output = gr.Textbox(label="Detected Emotion")
suggestions_output = gr.DataFrame(headers=["Title", "Link"], label="Suggestions")
map_html_output = gr.HTML(label="Map of Nearby Health Professionals")
professionals_output = gr.Textbox(label="Nearby Professionals", lines=5)
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_message, location, query, chatbot_history],
outputs=[chatbot_history, sentiment_output, emotion_output, suggestions_output, professionals_output, map_html_output]
)
app.launch() |