Testing / app.py
DreamStream-1's picture
Update app.py
5f4fda6 verified
raw
history blame
8.96 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load chatbot intents and training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Model for sentiment detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Model for emotion detection
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Chatbot logic
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate chatbot response and append to history."""
history = history or []
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} πŸ’₯"
history.append((message, response))
return history, response
# Sentiment analysis
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Emotion detection
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
return emotion
# Generate Suggestions
def generate_suggestions(emotion):
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
],
}
return suggestions.get(emotion, [["No suggestions available", ""]])
# Get Nearby Professionals and Generate Map
def get_health_professionals_and_map(location, query):
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found"], ""
except Exception as e:
return [f"Error: {e}"], ""
# App Main Function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message.lower())
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Enhanced CSS for Custom Title and Styling
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
body {
background: linear-gradient(135deg, #000000, #ff5722);
color: white;
font-family: 'Roboto', sans-serif;
}
button {
background-color: #ff5722 !important;
border: none !important;
color: white !important;
padding: 12px 20px;
font-size: 16px;
border-radius: 8px;
cursor: pointer;
}
button:hover {
background-color: #e64a19 !important;
}
textarea, input[type="text"], .gr-chatbot {
background: #000000 !important;
color: white !important;
border: 2px solid #ff5722 !important;
padding: 12px !important;
border-radius: 8px !important;
font-size: 14px;
}
.gr-dataframe, .gr-textbox {
background: #000000 !important;
color: white !important;
border: 2px solid #ff5722 !important;
border-radius: 8px !important;
font-size: 14px;
}
.suggestions-title {
font-size: 1.5rem !important;
font-weight: bold;
color: white;
margin-top: 20px;
}
h1 {
font-size: 4rem;
font-weight: bold;
margin-bottom: 10px;
color: white;
text-align: center;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.6);
}
h2 {
font-weight: 400;
font-size: 1.8rem;
color: white;
text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.4);
}
.input-title, .output-title {
font-size: 1.5rem;
font-weight: bold;
color: black;
margin-bottom: 10px;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
gr.HTML("<h2>Empowering Your Well-Being Journey πŸ’š</h2>")
with gr.Row():
gr.Markdown("<div class='input-title'>Your Message</div>")
user_message = gr.Textbox(label=None, placeholder="Enter your message...")
gr.Markdown("<div class='input-title'>Your Location</div>")
user_location = gr.Textbox(label=None, placeholder="Enter your location...")
gr.Markdown("<div class='input-title'>Your Query</div>")
search_query = gr.Textbox(label=None, placeholder="Search for professionals...")
chatbot_box = gr.Chatbot(label="Chat History")
gr.Markdown("<div class='output-title'>Detected Emotion</div>")
emotion_output = gr.Textbox(label=None)
gr.Markdown("<div class='output-title'>Detected Sentiment</div>")
sentiment_output = gr.Textbox(label=None)
gr.Markdown("<div class='suggestions-title'>Suggestions</div>")
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label=None)
gr.Markdown("<h2 class='suggestions-title'>Health Professionals Nearby</h2>")
map_output = gr.HTML(label=None)
professional_display = gr.Textbox(label=None, lines=5)
submit_btn = gr.Button("Submit")
submit_btn.click(
app_function,
inputs=[user_message, user_location, search_query, chatbot_box],
outputs=[
chatbot_box, sentiment_output, emotion_output,
suggestions_output, professional_display, map_output,
],
)
app.launch()