Spaces:
Sleeping
Sleeping
File size: 8,959 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 11851f1 274d1f4 d30f6a2 eefcaa7 d30f6a2 6858546 dacc7c0 d30f6a2 334ba26 11851f1 494aa89 6858546 334ba26 494aa89 0e313c1 1949203 4e61093 274d1f4 6858546 c69efb6 5f4fda6 9e5813b 11851f1 5f4fda6 9e5813b 5f4fda6 4e61093 5f4fda6 936af04 4e61093 4184e5e 6858546 936af04 4525308 274d1f4 a4c9f49 4184e5e 6858546 4e61093 6858546 4184e5e 6858546 11851f1 6858546 936af04 5f4fda6 f0734be 274d1f4 6858546 274d1f4 5f4fda6 274d1f4 6858546 658d2e0 274d1f4 1949203 864d91e 658d2e0 d30f6a2 658d2e0 d30f6a2 658d2e0 37c8a73 11851f1 6858546 1949203 4e61093 658d2e0 4e61093 658d2e0 4e61093 d30f6a2 4e61093 1949203 6858546 1949203 d30f6a2 4568d77 5f4fda6 bdb69d5 a4c9f49 bdb69d5 a4c9f49 bdb69d5 a4c9f49 bdb69d5 5f4fda6 a4c9f49 a699c5b 5f4fda6 a699c5b a4c9f49 5f4fda6 a4c9f49 a699c5b 5f4fda6 a4c9f49 bdb69d5 5f4fda6 bdb69d5 a4c9f49 658d2e0 4568d77 5f4fda6 d30f6a2 1949203 5f4fda6 658d2e0 6858546 658d2e0 4e61093 d30f6a2 11851f1 4e61093 6858546 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Download NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load chatbot intents and training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Model for sentiment detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Model for emotion detection
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Chatbot logic
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate chatbot response and append to history."""
history = history or []
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} π₯"
history.append((message, response))
return history, response
# Sentiment analysis
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
# Emotion detection
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
return emotion
# Generate Suggestions
def generate_suggestions(emotion):
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
],
}
return suggestions.get(emotion, [["No suggestions available", ""]])
# Get Nearby Professionals and Generate Map
def get_health_professionals_and_map(location, query):
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found"], ""
except Exception as e:
return [f"Error: {e}"], ""
# App Main Function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message.lower())
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# Enhanced CSS for Custom Title and Styling
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
body {
background: linear-gradient(135deg, #000000, #ff5722);
color: white;
font-family: 'Roboto', sans-serif;
}
button {
background-color: #ff5722 !important;
border: none !important;
color: white !important;
padding: 12px 20px;
font-size: 16px;
border-radius: 8px;
cursor: pointer;
}
button:hover {
background-color: #e64a19 !important;
}
textarea, input[type="text"], .gr-chatbot {
background: #000000 !important;
color: white !important;
border: 2px solid #ff5722 !important;
padding: 12px !important;
border-radius: 8px !important;
font-size: 14px;
}
.gr-dataframe, .gr-textbox {
background: #000000 !important;
color: white !important;
border: 2px solid #ff5722 !important;
border-radius: 8px !important;
font-size: 14px;
}
.suggestions-title {
font-size: 1.5rem !important;
font-weight: bold;
color: white;
margin-top: 20px;
}
h1 {
font-size: 4rem;
font-weight: bold;
margin-bottom: 10px;
color: white;
text-align: center;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.6);
}
h2 {
font-weight: 400;
font-size: 1.8rem;
color: white;
text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.4);
}
.input-title, .output-title {
font-size: 1.5rem;
font-weight: bold;
color: black;
margin-bottom: 10px;
}
"""
# Gradio Interface
with gr.Blocks(css=custom_css) as app:
gr.HTML("<h1>π Well-Being Companion</h1>")
gr.HTML("<h2>Empowering Your Well-Being Journey π</h2>")
with gr.Row():
gr.Markdown("<div class='input-title'>Your Message</div>")
user_message = gr.Textbox(label=None, placeholder="Enter your message...")
gr.Markdown("<div class='input-title'>Your Location</div>")
user_location = gr.Textbox(label=None, placeholder="Enter your location...")
gr.Markdown("<div class='input-title'>Your Query</div>")
search_query = gr.Textbox(label=None, placeholder="Search for professionals...")
chatbot_box = gr.Chatbot(label="Chat History")
gr.Markdown("<div class='output-title'>Detected Emotion</div>")
emotion_output = gr.Textbox(label=None)
gr.Markdown("<div class='output-title'>Detected Sentiment</div>")
sentiment_output = gr.Textbox(label=None)
gr.Markdown("<div class='suggestions-title'>Suggestions</div>")
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label=None)
gr.Markdown("<h2 class='suggestions-title'>Health Professionals Nearby</h2>")
map_output = gr.HTML(label=None)
professional_display = gr.Textbox(label=None, lines=5)
submit_btn = gr.Button("Submit")
submit_btn.click(
app_function,
inputs=[user_message, user_location, search_query, chatbot_box],
outputs=[
chatbot_box, sentiment_output, emotion_output,
suggestions_output, professional_display, map_output,
],
)
app.launch() |