Testing / app.py
DreamStream-1's picture
Update app.py
8b34069 verified
raw
history blame
7.35 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow and logs
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
nltk.download("punkt")
# Initialize Stemmer
stemmer = LancasterStemmer()
# Load Chatbot Training Data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Sentiment and Emotion Detection Models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API for Nearby Professionals
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Chatbot Helper
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate a chatbot response and update history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Detect sentiment and return sentiment emoji."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
def detect_emotion(user_input):
"""Detect user emotion based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label'].lower()
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral"
}
return emotion_map.get(emotion, "Unknown πŸ€”")
def generate_suggestions(emotion):
"""Provide clickable suggestions for each emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org" target="_blank">Visit</a>']
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org" target="_blank">Visit</a>'],
["Mindfulness Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Stress Tips", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
]
}
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
def get_health_professionals_and_map(location, query):
"""Show nearby professionals and interactive map."""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found nearby."], ""
# Main Function
def app_function(user_input, location, query, history):
chatbot_history, _ = chatbot(user_input, history)
sentiment = analyze_sentiment(user_input)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# CSS for Orange Themed Submit Button
custom_css = """
button { background: linear-gradient(45deg, #ff5722, #ff9800); color: white; }
.gr-dataframe, .gr-html, .gr-chatbot { background: black; color: white; border: 1px solid #ff5722; }
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.Markdown("### 🌟 Well-Being Companion")
user_input = gr.Textbox(label="Enter Your Message")
location_input = gr.Textbox(label="Your Location")
query_input = gr.Textbox(label="Search Query (e.g., therapist)")
chatbot_history = gr.Chatbot(label="Chatbot History")
sentiment_box = gr.Textbox(label="Sentiment Detected")
emotion_box = gr.Textbox(label="Emotion Detected")
suggestions_table = gr.DataFrame(headers=["Title", "Link"], label="Suggestion Based On Emotion")
map_output_box = gr.HTML(label="Interactive Map of Professionals")
professional_list_box = gr.Textbox(label="Professionals Nearby", lines=5)
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_input, location_input, query_input, chatbot_history],
outputs=[chatbot_history, sentiment_box, emotion_box, suggestions_table, professional_list_box, map_output_box]
)
app.launch()