File size: 7,345 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
274d1f4
 
f0734be
fa97be4
8b34069
274d1f4
d30f6a2
6858546
dacc7c0
8b34069
334ba26
 
8b34069
494aa89
6858546
334ba26
494aa89
 
0e313c1
90f35d6
4e61093
274d1f4
 
 
 
6858546
 
c69efb6
8b34069
9e5813b
 
11851f1
9e5813b
 
 
8b34069
4e61093
 
8b34069
936af04
4e61093
4184e5e
6858546
936af04
 
 
 
 
4525308
274d1f4
8b34069
4184e5e
 
d9bd34f
 
4e61093
6858546
 
 
4184e5e
 
d9bd34f
11851f1
6858546
936af04
f0734be
8b34069
274d1f4
 
 
6858546
 
 
274d1f4
 
8b34069
274d1f4
 
8b34069
90f35d6
 
 
 
 
 
 
 
8b34069
274d1f4
864d91e
8b34069
658d2e0
 
d30f6a2
8b34069
 
658d2e0
 
8b34069
 
d9bd34f
 
8b34069
 
d9bd34f
 
8b34069
d9bd34f
 
8b34069
 
37c8a73
d9bd34f
6858546
4e61093
8b34069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9bd34f
90f35d6
 
d9bd34f
1949203
 
90f35d6
4568d77
8b34069
bdb69d5
8b34069
 
bdb69d5
 
d9bd34f
bdb69d5
8b34069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6858546
658d2e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch

# Disable GPU usage for TensorFlow and logs
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
nltk.download("punkt")

# Initialize Stemmer
stemmer = LancasterStemmer()

# Load Chatbot Training Data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")

# Sentiment and Emotion Detection Models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Google Maps API for Nearby Professionals
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))

# Chatbot Helper
def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def chatbot(message, history):
    """Generate a chatbot response and update history."""
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        tag = labels[np.argmax(result)]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {str(e)}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    """Detect sentiment and return sentiment emoji."""
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return sentiment_map[sentiment_class]

def detect_emotion(user_input):
    """Detect user emotion based on input."""
    pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
    result = pipe(user_input)
    emotion = result[0]['label'].lower()
    emotion_map = {
        "joy": "😊 Joy",
        "anger": "😠 Anger",
        "sadness": "😒 Sadness",
        "fear": "😨 Fear",
        "surprise": "😲 Surprise",
        "neutral": "😐 Neutral"
    }
    return emotion_map.get(emotion, "Unknown πŸ€”")

def generate_suggestions(emotion):
    """Provide clickable suggestions for each emotion."""
    suggestions = {
        "joy": [
            ["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
            ["Emotional Wellness Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
            ["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
        ],
        "anger": [
            ["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
            ["Dealing with Anger", '<a href="https://www.helpguide.org" target="_blank">Visit</a>']
        ],
        "fear": [
            ["Coping with Anxiety", '<a href="https://www.helpguide.org" target="_blank">Visit</a>'],
            ["Mindfulness Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
        ],
        "sadness": [
            ["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
        ],
        "surprise": [
            ["Stress Tips", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
        ]
    }
    return suggestions.get(emotion.lower(), [["No suggestions available", ""]])

def get_health_professionals_and_map(location, query):
    """Show nearby professionals and interactive map."""
    geo_location = gmaps.geocode(location)
    if geo_location:
        lat, lng = geo_location[0]["geometry"]["location"].values()
        map_ = folium.Map(location=(lat, lng), zoom_start=13)
        professionals = []
        places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
        for place in places_result:
            professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
            folium.Marker(
                location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                popup=place["name"]
            ).add_to(map_)
        return professionals, map_._repr_html_()
    return ["No professionals found nearby."], ""

# Main Function
def app_function(user_input, location, query, history):
    chatbot_history, _ = chatbot(user_input, history)
    sentiment = analyze_sentiment(user_input)
    emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment, emotion, suggestions, professionals, map_html

# CSS for Orange Themed Submit Button
custom_css = """
button { background: linear-gradient(45deg, #ff5722, #ff9800); color: white; }
.gr-dataframe, .gr-html, .gr-chatbot { background: black; color: white; border: 1px solid #ff5722; }
"""

# Gradio Application
with gr.Blocks(css=custom_css) as app:
    gr.Markdown("### 🌟 Well-Being Companion")
    user_input = gr.Textbox(label="Enter Your Message")
    location_input = gr.Textbox(label="Your Location")
    query_input = gr.Textbox(label="Search Query (e.g., therapist)")
    chatbot_history = gr.Chatbot(label="Chatbot History")
    sentiment_box = gr.Textbox(label="Sentiment Detected")
    emotion_box = gr.Textbox(label="Emotion Detected")
    suggestions_table = gr.DataFrame(headers=["Title", "Link"], label="Suggestion Based On Emotion")
    map_output_box = gr.HTML(label="Interactive Map of Professionals")
    professional_list_box = gr.Textbox(label="Professionals Nearby", lines=5)
    submit_button = gr.Button("Submit")

    submit_button.click(
        app_function, 
        inputs=[user_input, location_input, query_input, chatbot_history], 
        outputs=[chatbot_history, sentiment_box, emotion_box, suggestions_table, professional_list_box, map_output_box]
    )
app.launch()