Spaces:
Sleeping
Sleeping
File size: 7,345 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e 274d1f4 f0734be fa97be4 8b34069 274d1f4 d30f6a2 6858546 dacc7c0 8b34069 334ba26 8b34069 494aa89 6858546 334ba26 494aa89 0e313c1 90f35d6 4e61093 274d1f4 6858546 c69efb6 8b34069 9e5813b 11851f1 9e5813b 8b34069 4e61093 8b34069 936af04 4e61093 4184e5e 6858546 936af04 4525308 274d1f4 8b34069 4184e5e d9bd34f 4e61093 6858546 4184e5e d9bd34f 11851f1 6858546 936af04 f0734be 8b34069 274d1f4 6858546 274d1f4 8b34069 274d1f4 8b34069 90f35d6 8b34069 274d1f4 864d91e 8b34069 658d2e0 d30f6a2 8b34069 658d2e0 8b34069 d9bd34f 8b34069 d9bd34f 8b34069 d9bd34f 8b34069 37c8a73 d9bd34f 6858546 4e61093 8b34069 d9bd34f 90f35d6 d9bd34f 1949203 90f35d6 4568d77 8b34069 bdb69d5 8b34069 bdb69d5 d9bd34f bdb69d5 8b34069 6858546 658d2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow and logs
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
nltk.download("punkt")
# Initialize Stemmer
stemmer = LancasterStemmer()
# Load Chatbot Training Data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Sentiment and Emotion Detection Models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API for Nearby Professionals
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Chatbot Helper
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
"""Generate a chatbot response and update history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(result)]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)}"
history.append((message, response))
return history, response
def analyze_sentiment(user_input):
"""Detect sentiment and return sentiment emoji."""
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment_class]
def detect_emotion(user_input):
"""Detect user emotion based on input."""
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label'].lower()
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral"
}
return emotion_map.get(emotion, "Unknown π€")
def generate_suggestions(emotion):
"""Provide clickable suggestions for each emotion."""
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org" target="_blank">Visit</a>']
],
"fear": [
["Coping with Anxiety", '<a href="https://www.helpguide.org" target="_blank">Visit</a>'],
["Mindfulness Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
],
"sadness": [
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
],
"surprise": [
["Stress Tips", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
]
}
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
def get_health_professionals_and_map(location, query):
"""Show nearby professionals and interactive map."""
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker(
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]
).add_to(map_)
return professionals, map_._repr_html_()
return ["No professionals found nearby."], ""
# Main Function
def app_function(user_input, location, query, history):
chatbot_history, _ = chatbot(user_input, history)
sentiment = analyze_sentiment(user_input)
emotion = detect_emotion(user_input)
suggestions = generate_suggestions(emotion)
professionals, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
# CSS for Orange Themed Submit Button
custom_css = """
button { background: linear-gradient(45deg, #ff5722, #ff9800); color: white; }
.gr-dataframe, .gr-html, .gr-chatbot { background: black; color: white; border: 1px solid #ff5722; }
"""
# Gradio Application
with gr.Blocks(css=custom_css) as app:
gr.Markdown("### π Well-Being Companion")
user_input = gr.Textbox(label="Enter Your Message")
location_input = gr.Textbox(label="Your Location")
query_input = gr.Textbox(label="Search Query (e.g., therapist)")
chatbot_history = gr.Chatbot(label="Chatbot History")
sentiment_box = gr.Textbox(label="Sentiment Detected")
emotion_box = gr.Textbox(label="Emotion Detected")
suggestions_table = gr.DataFrame(headers=["Title", "Link"], label="Suggestion Based On Emotion")
map_output_box = gr.HTML(label="Interactive Map of Professionals")
professional_list_box = gr.Textbox(label="Professionals Nearby", lines=5)
submit_button = gr.Button("Submit")
submit_button.click(
app_function,
inputs=[user_input, location_input, query_input, chatbot_history],
outputs=[chatbot_history, sentiment_box, emotion_box, suggestions_table, professional_list_box, map_output_box]
)
app.launch() |