Testing / app.py
DreamStream-1's picture
Update app.py
b377ce7 verified
raw
history blame
6.84 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import pandas as pd
import torch
# Disable TensorFlow GPU warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Download necessary NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json for chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load tokenized training data
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build TFlearn Chatbot Model
def build_chatbot_model():
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
return model
chatbot_model = build_chatbot_model()
# Bag of Words Function
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Response Function
def chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
idx = np.argmax(result)
tag = labels[idx]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error generating response: {str(e)} πŸ’₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Emotion Detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
try:
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
except Exception as e:
return f"Error detecting emotion: {str(e)} πŸ’₯"
# Sentiment Analysis
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
try:
with torch.no_grad():
outputs = sentiment_model(**inputs)
sentiment = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment]
except Exception as e:
return f"Error in sentiment analysis: {str(e)} πŸ’₯"
# Suggestions Based on Emotion
def generate_suggestions(emotion):
suggestions_map = {
"😊 Joy": [
{"Title": "Mindful Meditation 🧘", "Link": "https://www.helpguide.org/meditation"},
{"Title": "Learn a New Skill ✨", "Link": "https://www.skillshare.com/"},
],
"😒 Sadness": [
{"Title": "Talk to a Professional πŸ’¬", "Link": "https://www.betterhelp.com/"},
{"Title": "Mental Health Toolkit πŸ› οΈ", "Link": "https://www.psychologytoday.com/"},
],
"😠 Anger": [
{"Title": "Anger Management Tips πŸ”₯", "Link": "https://www.mentalhealth.org.uk"},
{"Title": "Stress Relieving Exercises 🌿", "Link": "https://www.calm.com/"},
],
}
return suggestions_map.get(emotion, [{"Title": "General Wellness Resources 🌈", "Link": "https://www.helpguide.org/wellness"}])
# Nearby Professionals Function
def search_nearby_professionals(location, query):
"""Returns a list of professionals as a list of lists for compatibility with DataFrame."""
if location and query:
results = [
{"Name": "Wellness Center", "Address": "123 Wellness Way"},
{"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
{"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
]
return [[item["Name"], item["Address"]] for item in results]
return []
# Main App Logic
def well_being_app(user_input, location, query, history):
history, _ = chatbot_response(user_input, history)
emotion = detect_emotion(user_input)
sentiment = analyze_sentiment(user_input)
emotion_name = emotion.split(": ")[-1]
suggestions = generate_suggestions(emotion_name)
suggestions_df = pd.DataFrame(suggestions)
professionals = search_nearby_professionals(location, query)
return history, sentiment, emotion, suggestions_df, professionals
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("## 🌱 Well-being Companion")
gr.Markdown("> Empowering Your Mental Health! πŸ’š")
with gr.Row():
user_input = gr.Textbox(label="Your Message")
location_input = gr.Textbox(label="Location")
query_input = gr.Textbox(label="Search Query")
submit_button = gr.Button("Submit")
chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detected")
suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", headers=["Name", "Address"])
submit_button.click(
well_being_app,
inputs=[user_input, location_input, query_input, chatbot_output],
outputs=[
chatbot_output,
sentiment_output,
emotion_output,
suggestions_output,
nearby_professionals_output,
],
)
interface.launch()