File size: 6,839 Bytes
f0734be
864d91e
2ae19d7
 
881aad3
4184e5e
 
 
 
 
 
f0734be
 
fa97be4
b377ce7
a6192b5
37d6095
a6192b5
 
dacc7c0
b377ce7
334ba26
 
b377ce7
494aa89
f0734be
334ba26
b377ce7
494aa89
 
0e313c1
9508310
f0734be
 
 
 
 
 
 
 
 
c69efb6
f0734be
c69efb6
b377ce7
936af04
 
4184e5e
f0734be
936af04
 
 
 
 
4525308
9508310
f0734be
4184e5e
 
f0734be
7479a23
 
b377ce7
f0734be
 
7479a23
4184e5e
 
f0734be
 
9508310
 
f0734be
4184e5e
b377ce7
f0734be
 
e623c13
f0734be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
936af04
b377ce7
f0734be
 
936af04
f0734be
 
 
 
 
7479a23
f0734be
7479a23
f0734be
 
2f693ca
9508310
864d91e
9508310
f0734be
5d0e15d
9508310
f0734be
 
9508310
 
f0734be
 
5d0e15d
 
f0734be
37c8a73
9508310
5d0e15d
b377ce7
5d0e15d
b377ce7
9508310
b377ce7
9508310
 
 
 
b377ce7
9508310
 
 
5d0e15d
9508310
f0734be
 
9508310
 
f0734be
5d0e15d
 
7479a23
9508310
 
 
b377ce7
9508310
f0734be
b377ce7
 
 
 
5d0e15d
9508310
 
 
 
b377ce7
5d0e15d
f0734be
 
9508310
 
 
 
 
 
 
 
f0734be
 
7479a23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import pandas as pd
import torch

# Disable TensorFlow GPU warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

# Download necessary NLTK resources
nltk.download("punkt")

# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()

# Load intents.json for chatbot
with open("intents.json") as file:
    intents_data = json.load(file)

# Load tokenized training data
with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build TFlearn Chatbot Model
def build_chatbot_model():
    net = tflearn.input_data(shape=[None, len(training[0])])
    net = tflearn.fully_connected(net, 8)
    net = tflearn.fully_connected(net, 8)
    net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
    net = tflearn.regression(net)
    model = tflearn.DNN(net)
    model.load("MentalHealthChatBotmodel.tflearn")
    return model

chatbot_model = build_chatbot_model()

# Bag of Words Function
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chatbot Response Function
def chatbot_response(message, history):
    history = history or []
    try:
        result = chatbot_model.predict([bag_of_words(message, words)])
        idx = np.argmax(result)
        tag = labels[idx]
        response = "I'm not sure how to respond to that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error generating response: {str(e)} πŸ’₯"

    history.append({"role": "user", "content": message})
    history.append({"role": "assistant", "content": response})
    return history, response

# Emotion Detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

def detect_emotion(user_input):
    pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
    try:
        result = pipe(user_input)
        emotion = result[0]["label"]
        emotion_map = {
            "joy": "😊 Joy",
            "anger": "😠 Anger",
            "sadness": "😒 Sadness",
            "fear": "😨 Fear",
            "surprise": "😲 Surprise",
            "neutral": "😐 Neutral",
        }
        return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
    except Exception as e:
        return f"Error detecting emotion: {str(e)} πŸ’₯"

# Sentiment Analysis
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    inputs = sentiment_tokenizer(user_input, return_tensors="pt")
    try:
        with torch.no_grad():
            outputs = sentiment_model(**inputs)
        sentiment = torch.argmax(outputs.logits, dim=1).item()
        sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
        return sentiment_map[sentiment]
    except Exception as e:
        return f"Error in sentiment analysis: {str(e)} πŸ’₯"

# Suggestions Based on Emotion
def generate_suggestions(emotion):
    suggestions_map = {
        "😊 Joy": [
            {"Title": "Mindful Meditation 🧘", "Link": "https://www.helpguide.org/meditation"},
            {"Title": "Learn a New Skill ✨", "Link": "https://www.skillshare.com/"},
        ],
        "😒 Sadness": [
            {"Title": "Talk to a Professional πŸ’¬", "Link": "https://www.betterhelp.com/"},
            {"Title": "Mental Health Toolkit πŸ› οΈ", "Link": "https://www.psychologytoday.com/"},
        ],
        "😠 Anger": [
            {"Title": "Anger Management Tips πŸ”₯", "Link": "https://www.mentalhealth.org.uk"},
            {"Title": "Stress Relieving Exercises 🌿", "Link": "https://www.calm.com/"},
        ],
    }
    return suggestions_map.get(emotion, [{"Title": "General Wellness Resources 🌈", "Link": "https://www.helpguide.org/wellness"}])

# Nearby Professionals Function
def search_nearby_professionals(location, query):
    """Returns a list of professionals as a list of lists for compatibility with DataFrame."""
    if location and query:
        results = [
            {"Name": "Wellness Center", "Address": "123 Wellness Way"},
            {"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
            {"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
        ]
        return [[item["Name"], item["Address"]] for item in results]
    return []

# Main App Logic
def well_being_app(user_input, location, query, history):
    history, _ = chatbot_response(user_input, history)
    emotion = detect_emotion(user_input)
    sentiment = analyze_sentiment(user_input)
    emotion_name = emotion.split(": ")[-1]
    suggestions = generate_suggestions(emotion_name)
    suggestions_df = pd.DataFrame(suggestions)
    professionals = search_nearby_professionals(location, query)
    return history, sentiment, emotion, suggestions_df, professionals

# Gradio Interface
with gr.Blocks() as interface:
    gr.Markdown("## 🌱 Well-being Companion")
    gr.Markdown("> Empowering Your Mental Health! πŸ’š")

    with gr.Row():
        user_input = gr.Textbox(label="Your Message")
        location_input = gr.Textbox(label="Location")
        query_input = gr.Textbox(label="Search Query")
        submit_button = gr.Button("Submit")

    chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
    sentiment_output = gr.Textbox(label="Sentiment Analysis")
    emotion_output = gr.Textbox(label="Emotion Detected")
    suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
    nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", headers=["Name", "Address"])

    submit_button.click(
        well_being_app,
        inputs=[user_input, location_input, query_input, chatbot_output],
        outputs=[
            chatbot_output,
            sentiment_output,
            emotion_output,
            suggestions_output,
            nearby_professionals_output,
        ],
    )

interface.launch()