Spaces:
Sleeping
Sleeping
File size: 6,839 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e f0734be fa97be4 b377ce7 a6192b5 37d6095 a6192b5 dacc7c0 b377ce7 334ba26 b377ce7 494aa89 f0734be 334ba26 b377ce7 494aa89 0e313c1 9508310 f0734be c69efb6 f0734be c69efb6 b377ce7 936af04 4184e5e f0734be 936af04 4525308 9508310 f0734be 4184e5e f0734be 7479a23 b377ce7 f0734be 7479a23 4184e5e f0734be 9508310 f0734be 4184e5e b377ce7 f0734be e623c13 f0734be 936af04 b377ce7 f0734be 936af04 f0734be 7479a23 f0734be 7479a23 f0734be 2f693ca 9508310 864d91e 9508310 f0734be 5d0e15d 9508310 f0734be 9508310 f0734be 5d0e15d f0734be 37c8a73 9508310 5d0e15d b377ce7 5d0e15d b377ce7 9508310 b377ce7 9508310 b377ce7 9508310 5d0e15d 9508310 f0734be 9508310 f0734be 5d0e15d 7479a23 9508310 b377ce7 9508310 f0734be b377ce7 5d0e15d 9508310 b377ce7 5d0e15d f0734be 9508310 f0734be 7479a23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import pandas as pd
import torch
# Disable TensorFlow GPU warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Download necessary NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json for chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load tokenized training data
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build TFlearn Chatbot Model
def build_chatbot_model():
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
return model
chatbot_model = build_chatbot_model()
# Bag of Words Function
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Response Function
def chatbot_response(message, history):
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
idx = np.argmax(result)
tag = labels[idx]
response = "I'm not sure how to respond to that. π€"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error generating response: {str(e)} π₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Emotion Detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
try:
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion π€")
except Exception as e:
return f"Error detecting emotion: {str(e)} π₯"
# Sentiment Analysis
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
try:
with torch.no_grad():
outputs = sentiment_model(**inputs)
sentiment = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return sentiment_map[sentiment]
except Exception as e:
return f"Error in sentiment analysis: {str(e)} π₯"
# Suggestions Based on Emotion
def generate_suggestions(emotion):
suggestions_map = {
"π Joy": [
{"Title": "Mindful Meditation π§", "Link": "https://www.helpguide.org/meditation"},
{"Title": "Learn a New Skill β¨", "Link": "https://www.skillshare.com/"},
],
"π’ Sadness": [
{"Title": "Talk to a Professional π¬", "Link": "https://www.betterhelp.com/"},
{"Title": "Mental Health Toolkit π οΈ", "Link": "https://www.psychologytoday.com/"},
],
"π Anger": [
{"Title": "Anger Management Tips π₯", "Link": "https://www.mentalhealth.org.uk"},
{"Title": "Stress Relieving Exercises πΏ", "Link": "https://www.calm.com/"},
],
}
return suggestions_map.get(emotion, [{"Title": "General Wellness Resources π", "Link": "https://www.helpguide.org/wellness"}])
# Nearby Professionals Function
def search_nearby_professionals(location, query):
"""Returns a list of professionals as a list of lists for compatibility with DataFrame."""
if location and query:
results = [
{"Name": "Wellness Center", "Address": "123 Wellness Way"},
{"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
{"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
]
return [[item["Name"], item["Address"]] for item in results]
return []
# Main App Logic
def well_being_app(user_input, location, query, history):
history, _ = chatbot_response(user_input, history)
emotion = detect_emotion(user_input)
sentiment = analyze_sentiment(user_input)
emotion_name = emotion.split(": ")[-1]
suggestions = generate_suggestions(emotion_name)
suggestions_df = pd.DataFrame(suggestions)
professionals = search_nearby_professionals(location, query)
return history, sentiment, emotion, suggestions_df, professionals
# Gradio Interface
with gr.Blocks() as interface:
gr.Markdown("## π± Well-being Companion")
gr.Markdown("> Empowering Your Mental Health! π")
with gr.Row():
user_input = gr.Textbox(label="Your Message")
location_input = gr.Textbox(label="Location")
query_input = gr.Textbox(label="Search Query")
submit_button = gr.Button("Submit")
chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detected")
suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", headers=["Name", "Address"])
submit_button.click(
well_being_app,
inputs=[user_input, location_input, query_input, chatbot_output],
outputs=[
chatbot_output,
sentiment_output,
emotion_output,
suggestions_output,
nearby_professionals_output,
],
)
interface.launch() |