File size: 3,771 Bytes
3ea8af4
ae3c5d7
3ea8af4
 
1e2e075
 
 
 
 
3ea8af4
00ce994
3ea8af4
00ce994
 
ae3c5d7
00ce994
ae3c5d7
 
 
 
00ce994
ae3c5d7
 
 
 
3ea8af4
d51d681
d94508f
 
1e2e075
d94508f
1e2e075
d94508f
1e2e075
d94508f
1e2e075
 
 
 
 
 
 
 
d51d681
1e2e075
 
 
 
 
 
d51d681
3ea8af4
 
 
 
 
 
e82172a
3ea8af4
ae3c5d7
3ea8af4
 
 
 
 
 
 
 
 
 
 
 
d94508f
3ea8af4
ae3c5d7
653fbbc
ae3c5d7
 
 
 
 
 
 
d94508f
861f0f9
ae3c5d7
861f0f9
ae3c5d7
 
00ce994
ae3c5d7
 
 
d51d681
1e2e075
d51d681
3ea8af4
1e2e075
 
 
 
 
3ea8af4
ae3c5d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
from tensorflow.keras.models import load_model
import pickle
import numpy as np
import os
import google.generativeai as genai

# Configure the generative AI with the API key
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

# Load the saved models
with open('rf_model.pkl', 'rb') as file:
    rf_model = pickle.load(file)

deep_model = load_model('deep_model.h5')

# Define the function to make predictions using the RandomForestRegressor model
def make_rf_prediction(model, input_data):
    prediction = model.predict(input_data)
    return prediction

# Define the function to make predictions using the deep learning model
def make_deep_prediction(model, input_data):
    prediction = model.predict(input_data).flatten()
    return prediction

# Define the function to calculate GPA
def calculate_gpa(total_score):
    if total_score >= 70:
        return 'A (5 points)', total_score
    elif total_score >= 60:
        return 'B (4 points)', total_score
    elif total_score >= 50:
        return 'C (3 points)', total_score
    elif total_score >= 45:
        return 'D (2 points)', total_score
    else:
        return 'F (0 points)', total_score

# Function to generate grade-based recommendations using Gemini API
def generate_grade_recommendations(grade):
    if grade >= 70:
        grade_desc = "good grade"
    else:
        grade_desc = "bad grade"

    input_prompt = f"The student has a {grade_desc}. What recommendations do you have for them?"
    model = genai.GenerativeModel('gemini-pro')
    response = model.generate_content(input_prompt, generation_config=genai.types.GenerationConfig(max_output_tokens=400))
    return response.text

# Create the Streamlit app
def main():
    # Set page title and configure layout
    st.set_page_config(page_title="Exam Score Prediction", layout="wide")

    # Add a title and description
    st.title("Exam Score Prediction")
    st.markdown(
        "This app predicts exam scores based on input features such as level, course units, attendance, mid-semester score, and assignments."
    )

    # Create input fields
    col1, col2 = st.columns(2)
    with col1:
        level = st.number_input("Level", min_value=200, max_value=400, step=1)
        course_units = st.number_input("Course Units", min_value=1, max_value=4, step=1)
    with col2:
        attendance = st.slider("Attendance", min_value=1, max_value=10, step=1)
        mid_semester = st.slider("Mid Semester Score", min_value=1, max_value=20, step=1)
        assignments = st.slider("Assignments", min_value=1, max_value=10, step=1)

    # Make prediction
    if st.button("Predict Exam Score"):
        # Create input data
        input_data = np.array([[level, course_units, attendance, mid_semester, assignments]])

        # Make predictions using both models
        rf_prediction = make_rf_prediction(rf_model, input_data)
        deep_prediction = make_deep_prediction(deep_model, input_data)

        # Combine predictions
        combined_prediction = (rf_prediction + deep_prediction) / 2

        # Calculate total score
        total_score = attendance + mid_semester + assignments + combined_prediction[0]

        # Ensure total score does not exceed 100
        total_score = min(total_score, 100)

        st.write(f"Predicted Exam Score: {combined_prediction[0]:.2f}")
        st.write(f"Total Score: {total_score:.2f}")
        
        # Calculate GPA
        gpa, numeric_score = calculate_gpa(total_score)
        st.write(f"Predicted GPA: {gpa}")

        # Generate recommendations based on GPA
        recommendations = generate_grade_recommendations(numeric_score)
        st.subheader("Recommendations Based on Grade:")
        st.write(recommendations)

if __name__ == '__main__':
    main()