A newer version of the Streamlit SDK is available:
1.44.1
metadata
title: Microbial Susceptibility Analyzer
emoji: π
colorFrom: blue
colorTo: indigo
sdk: streamlit
sdk_version: 1.43.2
app_file: app.py
pinned: false
license: mit
thumbnail: >-
https://cdn-uploads.huggingface.co/production/uploads/64774490312e3909019550f0/JWfMLBEIsP543Hu2G5yAR.jpeg
Microbial Susceptibility Analyzer
Overview
The Microbial Susceptibility Analyzer is a Streamlit-based web application that combines machine learning and rule-based decision making to predict antibiotic resistance patterns. The application provides:
- Susceptibility predictions for organism-antibiotic combinations
- Rule-based guidance for treatment decisions
- AI-powered explanations and recommendations
- Batch prediction capabilities for CSV datasets
Installation
- Clone the repository:
git clone https://github.com/yourusername/microbial-susceptibility-analyzer.git
cd microbial-susceptibility-analyzer
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
Create a
.streamlit/secrets.toml
file with your API keys:
OPENAI_API_KEY = "your_openai_api_key"
OPENAI_BASE_URL = "https://api.openai.com/v1"
Usage
Run the application:
streamlit run app.py
The application provides several pages:
- Home: Project overview and introduction
- Susceptibility Analysis: Single prediction interface
- AI Assistant: Expert system for detailed explanations
- Data Upload: Batch prediction for CSV files
- About: Project information and contact details
File Structure
microbial-susceptibility-analyzer/
βββ app.py # Main application file
βββ prediction.py # Prediction logic
βββ ai_assistant.py # AI integration
βββ utils.py # Utility functions
βββ config.py # Configuration settings
βββ requirements.txt # Python dependencies
βββ README.md # This documentation
βββ label_encoders/ # Label encoding files
β βββ organism_label_encoder.json
β βββ antibiotic_label_encoder.json
β βββ ...
βββ models/ # Trained models
β βββ best_model.pkl
β βββ best_model_1.pkl
βββ data/ # Data files
βββ implied_susceptibility_rules.csv
βββ microbiology_cultures_implied_susceptibility.csv
Configuration
The application requires the following configuration:
- Model Path: Set in
config.py
- Encoder Directory: Set in
config.py
- OpenAI API: Configure in
.streamlit/secrets.toml
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contact
For questions or support, contact:
Chukwuebuka Anulunko
[email protected]