EAV123's picture
Update README.md
de2d72c verified
|
raw
history blame contribute delete
3 kB
---
title: Microbial Susceptibility Analyzer
emoji: πŸ‘
colorFrom: blue
colorTo: indigo
sdk: streamlit
sdk_version: 1.43.2
app_file: app.py
pinned: false
license: mit
thumbnail: >-
https://cdn-uploads.huggingface.co/production/uploads/64774490312e3909019550f0/JWfMLBEIsP543Hu2G5yAR.jpeg
---
# Microbial Susceptibility Analyzer
## Overview
The Microbial Susceptibility Analyzer is a Streamlit-based web application that combines machine learning and rule-based decision making to predict antibiotic resistance patterns. The application provides:
- Susceptibility predictions for organism-antibiotic combinations
- Rule-based guidance for treatment decisions
- AI-powered explanations and recommendations
- Batch prediction capabilities for CSV datasets
## Installation
1. Clone the repository:
```bash
git clone https://github.com/yourusername/microbial-susceptibility-analyzer.git
cd microbial-susceptibility-analyzer
```
2. Create a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
```
3. Install dependencies:
```bash
pip install -r requirements.txt
```
4. Set up environment variables:
Create a `.streamlit/secrets.toml` file with your API keys:
```toml
OPENAI_API_KEY = "your_openai_api_key"
OPENAI_BASE_URL = "https://api.openai.com/v1"
```
## Usage
Run the application:
```bash
streamlit run app.py
```
The application provides several pages:
- **Home**: Project overview and introduction
- **Susceptibility Analysis**: Single prediction interface
- **AI Assistant**: Expert system for detailed explanations
- **Data Upload**: Batch prediction for CSV files
- **About**: Project information and contact details
## File Structure
```
microbial-susceptibility-analyzer/
β”œβ”€β”€ app.py # Main application file
β”œβ”€β”€ prediction.py # Prediction logic
β”œβ”€β”€ ai_assistant.py # AI integration
β”œβ”€β”€ utils.py # Utility functions
β”œβ”€β”€ config.py # Configuration settings
β”œβ”€β”€ requirements.txt # Python dependencies
β”œβ”€β”€ README.md # This documentation
β”œβ”€β”€ label_encoders/ # Label encoding files
β”‚ β”œβ”€β”€ organism_label_encoder.json
β”‚ β”œβ”€β”€ antibiotic_label_encoder.json
β”‚ └── ...
β”œβ”€β”€ models/ # Trained models
β”‚ β”œβ”€β”€ best_model.pkl
β”‚ └── best_model_1.pkl
└── data/ # Data files
β”œβ”€β”€ implied_susceptibility_rules.csv
└── microbiology_cultures_implied_susceptibility.csv
```
## Configuration
The application requires the following configuration:
1. **Model Path**: Set in `config.py`
2. **Encoder Directory**: Set in `config.py`
3. **OpenAI API**: Configure in `.streamlit/secrets.toml`
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Contact
For questions or support, contact:
Chukwuebuka Anulunko
[email protected]