File size: 6,807 Bytes
ccfb409
6ae72bf
 
f4e447d
 
6ae72bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e63918a
5d3c81a
6ae72bf
 
 
 
5d3c81a
6ae72bf
5d3c81a
6ae72bf
44eb0ab
6ae72bf
44eb0ab
 
6ae72bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dcb99
 
05d137c
9504048
17e0bb7
fc5882b
a060be9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import streamlit as st
import langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain import OpenAI, VectorDBQA
from langchain.chains import RetrievalQAWithSourcesChain
import PyPDF2

api_key = os.environ["OPENAI_API_KEY"]

#This function will go through pdf and extract and return list of page texts.
def read_and_textify(files):
    text_list = []
    sources_list = []
    for file in files:
        pdfReader = PyPDF2.PdfReader(file)
        #print("Page Number:", len(pdfReader.pages))
        for i in range(len(pdfReader.pages)):
          pageObj = pdfReader.pages[i]
          text = pageObj.extract_text()
          pageObj.clear()
          text_list.append(text)
          sources_list.append(file.name + "_page_"+str(i))
    return [text_list,sources_list]
  
st.set_page_config(layout="centered", page_title="Multidoc_QnA")
st.header("Multidoc_QnA")
st.write("---")
  
#file uploader
uploaded_files = st.file_uploader("Upload documents",accept_multiple_files=True, type=["txt","pdf"])
st.write("---")

if uploaded_files is None:
  st.info(f"""Upload files to analyse""")
elif uploaded_files:
  st.write(str(len(uploaded_files)) + " document(s) loaded..")
  
  textify_output = read_and_textify(uploaded_files)
  
  documents = textify_output[0]
  sources = textify_output[1]
  
  #extract embeddings
  embeddings = OpenAIEmbeddings(openai_api_key = api_key)
  #vstore with metadata. Here we will store page numbers.
  vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
  #deciding model
  model_name = "gpt-3.5-turbo"
  # model_name = "gpt-4"

  retriever = vStore.as_retriever()
  retriever.search_kwargs = {'k':2}

  #initiate model
  llm = OpenAI(model_name=model_name, openai_api_key = api_key, streaming=True)
  model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
  
  st.header("Ask your data")
  user_q = st.text_area("Enter your questions here")
  
  if st.button("Get Response"):
    try:
      with st.spinner("Model is working on it..."):
        result = model({"question":user_q}, return_only_outputs=True)
        st.subheader('Your response:')
        st.write(result['answer'])
        st.subheader('Source pages:')
        st.write(result['sources'])
    except Exception as e:
      st.error(f"An error occurred: {e}")
      st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')
      
        
    
  
  
  
  
  
  
  
  
  
























# import gradio as gr
# import streamlit as st
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores import Chroma
# from langchain.chains import ConversationalRetrievalChain
# from langchain.chat_models import ChatOpenAI
# from langchain.document_loaders import PyPDFLoader
# import os
# import fitz
# from PIL import Image


# # Global variables
# COUNT, N = 0, 0
# chat_history = []
# chain = None  # Initialize chain as None

# # Function to set the OpenAI API key

# api_key = os.environ['OPENAI_API_KEY']

# st.write(api_key)

    
# # Function to enable the API key input box
# def enable_api_box():
#     return enable_box

# # Function to add text to the chat history
# def add_text(history, text):
#     if not text:
#         raise gr.Error('Enter text')
#     history = history + [(text, '')]
#     return history

# # Function to process the PDF file and create a conversation chain
# def process_file(file):
#     global chain
#     if 'OPENAI_API_KEY' not in os.environ:
#         raise gr.Error('Upload your OpenAI API key')

#     # Replace with your actual PDF processing logic
#     loader = PyPDFLoader(file.name)
#     documents = loader.load()
#     embeddings = OpenAIEmbeddings()
#     pdfsearch = Chroma.from_documents(documents, embeddings)

#     chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
#                                     retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
#                                     return_source_documents=True)
#     return chain

# # Function to generate a response based on the chat history and query
# def generate_response(history, query, pdf_upload):
#     global COUNT, N, chat_history, chain
#     if not pdf_upload:
#         raise gr.Error(message='Upload a PDF')

#     if COUNT == 0:
#         chain = process_file(pdf_upload)
#         COUNT += 1

#     # Replace with your LangChain logic to generate a response 
#     result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)  
#     chat_history += [(query, result["answer"])]
#     N = list(result['source_documents'][0])[1][1]['page']  # Adjust as needed

#     for char in result['answer']:
#         history[-1][-1] += char  
#     return history, ''  

# # Function to render a specific page of a PDF file as an image
# def render_file(file):
#     global N
#     doc = fitz.open(file.name)
#     page = doc[N]
#     pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) 
#     image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
#     return image

# # Function to render initial content from the PDF
# def render_first(pdf_file): 
#     # Replace with logic to process the PDF and generate an initial image
#     image = Image.new('RGB', (600, 400), color = 'white') # Placeholder
#     return image

# # Streamlit & Gradio Interface

# st.title("PDF-Powered Chatbot") 

# with st.container():      
#   gr.Markdown("""     
#   <style>       
#   .image-container { height: 680px; }     
#   </style>     
#   """)    

# with gr.Blocks() as demo:
#     pdf_upload1 = gr.UploadButton("πŸ“ Upload PDF 1", file_types=[".pdf"])  # Define pdf_upload1

#     # ... (rest of your interface creation)

#     txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...")     
#     submit_btn = gr.Button('Submit')

#     @submit_btn.click()
#     def on_submit():
#       add_text(chatbot, txt)
#       generate_response(chatbot, txt, pdf_upload1)  # Use pdf_upload1 here
#       render_file(pdf_upload1)  # Use pdf_upload1 here

# if __name__ == "__main__":
#     gr.Interface(         
#         fn=generate_response,
#         inputs=[
#             "file",  # Define pdf_upload1
#             "text",  # Define chatbot output
#             "text"   # Define txt
#         ],
#         outputs=[
#             "image",  # Define show_img
#             "text",   # Define chatbot output
#             "text"    # Define txt
#         ],   
#         title="PDF-Powered Chatbot"     
#     ).launch()