docreader / app.py
CosmoAI's picture
Update app.py
6ae72bf verified
raw
history blame
6.81 kB
import streamlit as st
import langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain import OpenAI, VectorDBQA
from langchain.chains import RetrievalQAWithSourcesChain
import PyPDF2
api_key = os.environ["OPENAI_API_KEY"]
#This function will go through pdf and extract and return list of page texts.
def read_and_textify(files):
text_list = []
sources_list = []
for file in files:
pdfReader = PyPDF2.PdfReader(file)
#print("Page Number:", len(pdfReader.pages))
for i in range(len(pdfReader.pages)):
pageObj = pdfReader.pages[i]
text = pageObj.extract_text()
pageObj.clear()
text_list.append(text)
sources_list.append(file.name + "_page_"+str(i))
return [text_list,sources_list]
st.set_page_config(layout="centered", page_title="Multidoc_QnA")
st.header("Multidoc_QnA")
st.write("---")
#file uploader
uploaded_files = st.file_uploader("Upload documents",accept_multiple_files=True, type=["txt","pdf"])
st.write("---")
if uploaded_files is None:
st.info(f"""Upload files to analyse""")
elif uploaded_files:
st.write(str(len(uploaded_files)) + " document(s) loaded..")
textify_output = read_and_textify(uploaded_files)
documents = textify_output[0]
sources = textify_output[1]
#extract embeddings
embeddings = OpenAIEmbeddings(openai_api_key = api_key)
#vstore with metadata. Here we will store page numbers.
vStore = Chroma.from_texts(documents, embeddings, metadatas=[{"source": s} for s in sources])
#deciding model
model_name = "gpt-3.5-turbo"
# model_name = "gpt-4"
retriever = vStore.as_retriever()
retriever.search_kwargs = {'k':2}
#initiate model
llm = OpenAI(model_name=model_name, openai_api_key = api_key, streaming=True)
model = RetrievalQAWithSourcesChain.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
st.header("Ask your data")
user_q = st.text_area("Enter your questions here")
if st.button("Get Response"):
try:
with st.spinner("Model is working on it..."):
result = model({"question":user_q}, return_only_outputs=True)
st.subheader('Your response:')
st.write(result['answer'])
st.subheader('Source pages:')
st.write(result['sources'])
except Exception as e:
st.error(f"An error occurred: {e}")
st.error('Oops, the GPT response resulted in an error :( Please try again with a different question.')
# import gradio as gr
# import streamlit as st
# from langchain.embeddings.openai import OpenAIEmbeddings
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores import Chroma
# from langchain.chains import ConversationalRetrievalChain
# from langchain.chat_models import ChatOpenAI
# from langchain.document_loaders import PyPDFLoader
# import os
# import fitz
# from PIL import Image
# # Global variables
# COUNT, N = 0, 0
# chat_history = []
# chain = None # Initialize chain as None
# # Function to set the OpenAI API key
# api_key = os.environ['OPENAI_API_KEY']
# st.write(api_key)
# # Function to enable the API key input box
# def enable_api_box():
# return enable_box
# # Function to add text to the chat history
# def add_text(history, text):
# if not text:
# raise gr.Error('Enter text')
# history = history + [(text, '')]
# return history
# # Function to process the PDF file and create a conversation chain
# def process_file(file):
# global chain
# if 'OPENAI_API_KEY' not in os.environ:
# raise gr.Error('Upload your OpenAI API key')
# # Replace with your actual PDF processing logic
# loader = PyPDFLoader(file.name)
# documents = loader.load()
# embeddings = OpenAIEmbeddings()
# pdfsearch = Chroma.from_documents(documents, embeddings)
# chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
# retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
# return_source_documents=True)
# return chain
# # Function to generate a response based on the chat history and query
# def generate_response(history, query, pdf_upload):
# global COUNT, N, chat_history, chain
# if not pdf_upload:
# raise gr.Error(message='Upload a PDF')
# if COUNT == 0:
# chain = process_file(pdf_upload)
# COUNT += 1
# # Replace with your LangChain logic to generate a response
# result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
# chat_history += [(query, result["answer"])]
# N = list(result['source_documents'][0])[1][1]['page'] # Adjust as needed
# for char in result['answer']:
# history[-1][-1] += char
# return history, ''
# # Function to render a specific page of a PDF file as an image
# def render_file(file):
# global N
# doc = fitz.open(file.name)
# page = doc[N]
# pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
# image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
# return image
# # Function to render initial content from the PDF
# def render_first(pdf_file):
# # Replace with logic to process the PDF and generate an initial image
# image = Image.new('RGB', (600, 400), color = 'white') # Placeholder
# return image
# # Streamlit & Gradio Interface
# st.title("PDF-Powered Chatbot")
# with st.container():
# gr.Markdown("""
# <style>
# .image-container { height: 680px; }
# </style>
# """)
# with gr.Blocks() as demo:
# pdf_upload1 = gr.UploadButton("πŸ“ Upload PDF 1", file_types=[".pdf"]) # Define pdf_upload1
# # ... (rest of your interface creation)
# txt = gr.Textbox(label="Enter your query", placeholder="Ask a question...")
# submit_btn = gr.Button('Submit')
# @submit_btn.click()
# def on_submit():
# add_text(chatbot, txt)
# generate_response(chatbot, txt, pdf_upload1) # Use pdf_upload1 here
# render_file(pdf_upload1) # Use pdf_upload1 here
# if __name__ == "__main__":
# gr.Interface(
# fn=generate_response,
# inputs=[
# "file", # Define pdf_upload1
# "text", # Define chatbot output
# "text" # Define txt
# ],
# outputs=[
# "image", # Define show_img
# "text", # Define chatbot output
# "text" # Define txt
# ],
# title="PDF-Powered Chatbot"
# ).launch()