Spaces:
Runtime error
Runtime error
File size: 7,274 Bytes
508a685 6ed0fb2 508a685 6ed0fb2 508a685 0f199ae 508a685 0f199ae 508a685 0f199ae 508a685 0f199ae 508a685 0f199ae 508a685 0f199ae 508a685 0f199ae 508a685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import pandas as pd
import pickle as pkl
from numpy import reshape
import numpy as np
import gradio as gr
class NLP:
def __init__(self) -> None:
self.__path = "models/"
self.__exec = {"Perceptron": [self.perceptron_pol_eval, self.perceptron_rat_eval], "K-Neighbors": [self.kneighbors_pol_eval, self.kneighbors_rat_eval], "Naive Bayes": [self.NB_pol_eval, self.NB_rat_eval], "SVM": [self.SVM_pol_eval, self.SVM_rat_eval], "Random Forest": [self.RF_pol_eval, self.RF_rat_eval], "NN (MLP)": [self.MLP_pol_eval, self.MLP_rat_eval], "Dummy (Baseline)": [self.Dummy_pol_eval, self.Dummy_rat_eval]}
self.__get_vocabulary()
self.__vectorizer_pol = pkl.load(open(self.__path + "vectorizer_pol.pkl", 'rb'))
self.__vectorizer_rat = pkl.load(open(self.__path + "vectorizer_rat.pkl", 'rb'))
self.__X_pol_test = pkl.load(open(self.__path + "X_pol_test.pkl", 'rb'))
self.__y_pol_test = pkl.load(open(self.__path + "y_pol_test.pkl", 'rb'))
self.__X_rat_test = self.__X_pol_test
self.__y_rat_test = pkl.load(open(self.__path + "y_rat_test.pkl", 'rb'))
self.__get_models()
def __get_models(self):
self.__perceptron_pol = pkl.load(open(self.__path + "perceptron_pol.pkl", 'rb'))
self.__perceptron_pol_score = self.__perceptron_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__perceptron_rat = pkl.load(open(self.__path + "perceptron_rat.pkl", 'rb'))
self.__perceptron_rat_score = self.__perceptron_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__rf_pol = pkl.load(open(self.__path + "rf_pol.pkl", 'rb'))
self.__rf_pol_score = self.__rf_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__rf_rat = pkl.load(open(self.__path + "rf_rat.pkl", 'rb'))
self.__rf_rat_score = self.__rf_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__nb_pol = pkl.load(open(self.__path + "nb_pol.pkl", 'rb'))
self.__nb_pol_score = self.__nb_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__nb_rat = pkl.load(open(self.__path + "nb_rat.pkl", 'rb'))
self.__nb_rat_score = self.__nb_rat.score(self.__X_rat_test, self.__y_rat_test)
# self.__svm_pol = pkl.load(open(self.__path + "svm_pol.pkl", 'rb'))
# self.__svm_pol_score = self.__svm_pol.score(self.__X_pol_test, self.__y_pol_test)
# self.__svm_rat = pkl.load(open(self.__path + "svm_rat.pkl", 'rb'))
# self.__svm_rat_score = self.__svm_rat.score(self.__X_rat_test, self.__y_rat_test)
# self.__k_neighbors_pol = pkl.load(open(self.__path + "kneighbors_pol.pkl", 'rb'))
# self.__k_neighbors_pol_score = self.__k_neighbors_pol.score(self.__X_pol_test, self.__y_pol_test)
# self.__k_neighbors_rat = pkl.load(open(self.__path + "kneighbors_rat.pkl", 'rb'))
# self.__k_neighbors_rat_score = self.__k_neighbors_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__dummy_pol = pkl.load(open(self.__path + "dummy_pol.pkl", 'rb'))
self.__dummy_pol_score = self.__dummy_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__dummy_rat = pkl.load(open(self.__path + "dummy_rat.pkl", 'rb'))
self.__dummy_rat_score = self.__dummy_rat.score(self.__X_rat_test, self.__y_rat_test)
self.__clf_pol = pkl.load(open(self.__path + "clf_pol.pkl", 'rb'))
self.__clf_pol_score = self.__clf_pol.score(self.__X_pol_test, self.__y_pol_test)
self.__clf_rat = pkl.load(open(self.__path + "clf_rat.pkl", 'rb'))
self.__clf_rat_score = self.__clf_rat.score(self.__X_rat_test, self.__y_rat_test)
def perceptron_pol_eval(self, evalu):
tmp = self.__perceptron_pol.predict(evalu)
return([[tmp, 1-tmp]], str(self.__perceptron_pol_score))
def perceptron_rat_eval(self, evalu):
tmp = self.__perceptron_rat.predict(evalu)
if (tmp == 5):
tmp = [[0, 0, 0, 1]]
elif (tmp == 4):
tmp = [[0, 0, 1, 0]]
elif (tmp == 2):
tmp = [[0, 1, 0, 0]]
else:
tmp = [[1, 0, 0, 0]]
return(tmp, str(self.__perceptron_rat_score))
def kneighbors_pol_eval(self, evalu):
return ([0, 0], "0.45")
#return(self.__k_neighbors_pol.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
def kneighbors_rat_eval(self, evalu):
return ([0, 0], "0.27")
#return(self.__k_neighbors_rat.predict_proba(evalu).tolist(), str(self.__k_neighbors_rat_score))
def NB_pol_eval(self, evalu):
return(self.__nb_pol.predict_proba(evalu).tolist(), str(self.__nb_pol_score))
def NB_rat_eval(self, evalu):
return(self.__nb_rat.predict_proba(evalu).tolist(), str(self.__nb_rat_score))
def SVM_pol_eval(self, evalu):
return ([0, 0], "0.57")
#return(self.__svm_pol.predict_proba(evalu).tolist(), str(self.__svm_pol_score))
def SVM_rat_eval(self, evalu):
return ([0, 0], "0.22")
#return(self.__svm_rat.predict_proba(evalu).tolist(), str(self.__svm_rat_score))
def RF_pol_eval(self, evalu):
return(self.__rf_pol.predict_proba(evalu).tolist(), str(self.__rf_pol_score))
def RF_rat_eval(self, evalu):
return(self.__rf_rat.predict_proba(evalu).tolist(), str(self.__rf_rat_score))
def MLP_pol_eval(self, evalu):
return(self.__clf_pol.predict_proba(evalu).tolist(), str(self.__clf_pol_score))
def MLP_rat_eval(self, evalu):
return(self.__clf_rat.predict_proba(evalu).tolist(), str(self.__clf_rat_score))
def Dummy_pol_eval(self, evalu):
return(self.__dummy_pol.predict_proba(evalu).tolist(), self.__dummy_pol_score)
def Dummy_rat_eval(self, evalu):
tmp = self.__dummy_rat.predict_proba(evalu).tolist()
return(tmp, self.__dummy_rat.score)
def __get_vocabulary(self):
with open("dataset/vocabulary_polarity.txt", "r") as o:
res = o.read()
self.__vocabulary = res.split("\n")
self.__vocabulary = list(set(self.__vocabulary))
def Tokenizer(self, text):
tmp = self.__vectorizer_pol.transform([text])
tmp = tmp.toarray()
return (tmp)
def Manage(self, model, Dataset, review):
if (Dataset == "Binary"):
percent, score = self.__exec[model][0](review)
res = pd.DataFrame({'Positive': percent[0][0], 'Negative': percent[0][1]}, index=["Prediction"])
else:
percent, score = self.__exec[model][1](review)
res = pd.DataFrame({'Rated 1/5': percent[0][0], 'Rated 2/5': percent[0][1], 'Rated 4/5': percent[0][2], 'Rated 5/5': percent[0][3]}, index=["Prediction"])
return (res, f"Model: {model}\nDataset: {Dataset}\nAccuracy: {str(float(score)*100)}")
if __name__ == "__main__":
class Execution:
def __init__(self):
self.__n = NLP()
def greet(self, Model, Dataset, Review):
return(self.__n.Manage(Model, Dataset, self.__n.Tokenizer(Review)))
e = Execution()
gr.Interface(e.greet, [gr.inputs.Dropdown(["Perceptron", "K-Neighbors", "Naive Bayes", "SVM", "Random Forest", "NN (MLP)", "Dummy (Baseline)"]), gr.inputs.Dropdown(["Binary", "Rating"]), "text"], [gr.outputs.Dataframe(), "text"]).launch() |