Spaces:
Sleeping
Sleeping
import streamlit as st | |
import ee | |
from datetime import datetime | |
# Earth Engine Authentication | |
service_account = 'earth-engine-service-account@ee-esmaeilkiani1387.iam.gserviceaccount.com' | |
credentials = ee.ServiceAccountCredentials(service_account, 'ee-esmaeilkiani1387-1b2c5e812a1d.json') | |
ee.Initialize(credentials) | |
# Define a function to fetch historical temperature data | |
def get_historical_temperature(aoi, start_date, end_date): | |
dataset = ee.ImageCollection("ECMWF/ERA5/DAILY") \ | |
.filterBounds(aoi) \ | |
.filterDate(start_date, end_date) \ | |
.select('mean_2m_air_temperature') | |
# Calculate daily mean temperature (in Celsius) | |
temp_collection = dataset.map(lambda image: image.subtract(273.15).rename('daily_mean_temp')) | |
# Reduce the collection to mean values over the area | |
mean_temp = temp_collection.mean().reduceRegion( | |
reducer=ee.Reducer.mean(), | |
geometry=aoi, | |
scale=1000, | |
bestEffort=True | |
) | |
return mean_temp.getInfo() | |
# Define the area of interest (AOI) | |
# Example: Assume aoi is defined based on user's GeoJSON or coordinates | |
aoi = ee.Geometry.Point([48.73168141056203, 31.53180450320103]) # Example coordinates for a specific farm location | |
# Set start and end dates | |
start_date = "2023-01-01" | |
end_date = "2023-12-31" | |
# Fetch and display temperature data | |
temp_data = get_historical_temperature(aoi, start_date, end_date) | |
st.write("Historical Temperature Data (°C):", temp_data['daily_mean_temp']) | |