Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPProcessor, CLIPModel | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
# Load CLIP model for image classification | |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Load Mistral-7B-Instruct-v0.3 model for chat | |
mistral_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") | |
mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") | |
# Function for image classification with CLIP (anime recognition) | |
def classify_image(input_image): | |
if isinstance(input_image, str): | |
response = requests.get(input_image) | |
img = Image.open(BytesIO(response.content)) | |
else: | |
img = Image.fromarray(input_image) | |
# Prepare the image and text (anime-related labels) | |
inputs = clip_processor(text=["anime", "cartoon", "realistic", "painting"], images=img, return_tensors="pt", padding=True) | |
outputs = clip_model(**inputs) | |
logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
probs = logits_per_image.softmax(dim=1) # we can apply softmax to get the label probabilities | |
# Return the predicted class label | |
labels = ["anime", "cartoon", "realistic", "painting"] | |
predicted_label = labels[probs.argmax()] | |
return predicted_label | |
# Function for chat with Mistral 7B Instruct | |
def chat_with_mistral(input_text): | |
inputs = mistral_tokenizer(input_text, return_tensors="pt") | |
outputs = mistral_model.generate(inputs["input_ids"], max_length=150) | |
response = mistral_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create Gradio interface for both Image Classification and Chat | |
with gr.Blocks() as demo: | |
with gr.Tab("Chat with Mistral"): | |
chat_input = gr.Textbox(label="Ask Mistral 7B", placeholder="Type your question here...") | |
chat_output = gr.Textbox(label="Mistral's Reply", interactive=False) | |
chat_input.submit(chat_with_mistral, inputs=chat_input, outputs=chat_output) | |
with gr.Tab("Classify Anime Image"): | |
img_input = gr.Image(type="numpy", label="Upload Image for Anime Classification") | |
img_output = gr.Textbox(label="Predicted Label", interactive=False) | |
img_input.change(classify_image, inputs=img_input, outputs=img_output) | |
# Launch the interface | |
demo.launch() | |