expo / app.py
Faizal2805's picture
Update app.py
2e415e2 verified
raw
history blame
4.18 kB
import gradio as gr
from huggingface_hub import InferenceClient
# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Response Function
def respond(message, history, system_message, max_tokens, temperature, top_p):
# Ensure correct message structure
messages = [{"role": "system", "content": system_message}]
if isinstance(history, list):
for entry in history:
if isinstance(entry, dict):
messages.append(entry)
elif isinstance(entry, tuple) and len(entry) == 2:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
# Append user message
messages.append({"role": "user", "content": message})
# Initialize response
response = ""
# Generate response
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
# Fine-Tuning GPT-2 on Hugging Face Spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset
from peft import LoraConfig, get_peft_model
import torch
# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
{"text": "What is your name?", "label": "I am Eva, how can I help you?"},
{"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = Dataset.from_dict({"text": [d['text'] for d in custom_data],
"label": [d['label'] for d in custom_data]})
# Load OpenWebText dataset (5% portion)
dataset = dataset_custom.train_test_split(test_size=0.2)['train']
# Tokenization function
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"]
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Corrected Gradio Interface
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()