expo / app.py
Faizal2805's picture
Update app.py
e702117 verified
raw
history blame
4.76 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import Dataset, load_dataset
from peft import LoraConfig, get_peft_model
import torch
# Initialize Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Add padding token (GPT-2 fix)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"text": "Who are you?", "label": "I am Eva, a virtual voice assistant."},
{"text": "What is your name?", "label": "I am Eva, how can I help you?"},
{"text": "What can you do?", "label": "I can assist with answering questions, searching the web, and much more!"},
{"text": "Who invented the computer?", "label": "Charles Babbage is known as the father of the computer."},
{"text": "Tell me a joke.", "label": "Why don’t scientists trust atoms? Because they make up everything!"},
{"text": "Who is the Prime Minister of India?", "label": "The current Prime Minister of India is Narendra Modi."},
{"text": "Who created you?", "label": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = Dataset.from_dict({
"text": [d['text'] for d in custom_data],
"label": [d['label'] for d in custom_data]
})
# Load OpenWebText dataset (5% portion to avoid streaming issues)
dataset = load_dataset("Skylion007/openwebtext", split="train[:20%]")
# Tokenization function
def tokenize_function(examples):
return tokenizer(
examples["text"],
truncation=True,
padding="max_length",
max_length=512
)
tokenized_datasets = dataset_custom.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable() # Enable checkpointing for memory efficiency
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio Chat Interface
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
# Ensure 'history' is handled as a list of dicts
if isinstance(history, list):
for entry in history:
if isinstance(entry, dict):
messages.append(entry) # Correct format already
elif isinstance(entry, tuple) and len(entry) == 2:
messages.append({"role": "user", "content": entry[0]})
messages.append({"role": "assistant", "content": entry[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(type="messages"),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()