expo / app.py
Faizal2805's picture
Update app.py
26c067a verified
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
# Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
# Install required libraries
# Install required libraries (Run this separately in a terminal or notebook cell)
# !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch
# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Load the OpenWebText dataset using streaming (No download required)
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
{"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
{"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
{"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
{"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
{"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = load_dataset("json", data_files={"train": custom_data})
# Merge with OpenWebText dataset
dataset = load_dataset("Skylion007/openwebtext", split="train[:50%]") # Load 5% to avoid streaming issues
# Tokenization function
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
)
model = get_peft_model(model, lora_config)
# Enable gradient checkpointing to reduce memory usage
model.gradient_checkpointing_enable()
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch(share=True)