Spaces:
Sleeping
Sleeping
File size: 5,126 Bytes
fdd2607 ad8a314 8377ba5 317d585 8377ba5 ea92c48 c0c2682 ea92c48 8377ba5 e702117 8377ba5 ea92c48 8377ba5 e702117 8377ba5 c79c478 c0c2682 c79c478 0b103dc c0c2682 ad8a314 8377ba5 26c067a e702117 0b103dc ea92c48 c0c2682 ea92c48 c0c2682 ea92c48 8377ba5 ea92c48 ad8a314 8377ba5 ea92c48 8377ba5 c0c2682 ea92c48 8377ba5 ea92c48 ad8a314 ea92c48 8377ba5 ea92c48 8377ba5 ea92c48 0b103dc ea92c48 8377ba5 e702117 8377ba5 e1973f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
# Fine-Tuning GPT-2 on Hugging Face Spaces (Streaming 40GB Dataset, No Storage Issues)
# Install required libraries
# Install required libraries (Run this separately in a terminal or notebook cell)
# !pip install transformers datasets peft accelerate bitsandbytes torch torchvision torchaudio gradio -q
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from peft import LoraConfig, get_peft_model
import torch
# Authenticate Hugging Face
from huggingface_hub import notebook_login
notebook_login()
# Load GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Load the OpenWebText dataset using streaming (No download required)
# Custom Dataset (Predefined Q&A Pairs for Project Expo)
custom_data = [
{"prompt": "Who are you?", "response": "I am Eva, a virtual voice assistant."},
{"prompt": "What is your name?", "response": "I am Eva, how can I help you?"},
{"prompt": "What can you do?", "response": "I can assist with answering questions, searching the web, and much more!"},
{"prompt": "Who invented the computer?", "response": "Charles Babbage is known as the father of the computer."},
{"prompt": "Tell me a joke.", "response": "Why don’t scientists trust atoms? Because they make up everything!"},
{"prompt": "Who is the Prime Minister of India?", "response": "The current Prime Minister of India is Narendra Modi."},
{"prompt": "Who created you?", "response": "I was created by an expert team specializing in AI fine-tuning and web development."}
]
# Convert custom dataset to Hugging Face Dataset
dataset_custom = load_dataset("json", data_files={"train": custom_data})
# Merge with OpenWebText dataset
dataset = load_dataset("Skylion007/openwebtext", split="train[:50%]") # Load 5% to avoid streaming issues
# Tokenization function
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Apply LoRA for efficient fine-tuning
lora_config = LoraConfig(
r=8, lora_alpha=32, lora_dropout=0.05, bias="none",
target_modules=["c_attn", "c_proj"] # Apply LoRA to attention layers
)
model = get_peft_model(model, lora_config)
# Enable gradient checkpointing to reduce memory usage
model.gradient_checkpointing_enable()
# Training arguments
training_args = TrainingArguments(
output_dir="gpt2_finetuned",
auto_find_batch_size=True,
gradient_accumulation_steps=4,
learning_rate=5e-5,
num_train_epochs=3,
save_strategy="epoch",
logging_dir="logs",
bf16=True,
push_to_hub=True
)
# Trainer setup
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets
)
# Start fine-tuning
trainer.train()
# Save and push the model to Hugging Face Hub
trainer.save_model("gpt2_finetuned")
tokenizer.save_pretrained("gpt2_finetuned")
trainer.push_to_hub()
# Deploy as Gradio Interface
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch(share=True) |