File size: 5,813 Bytes
5be3d23
bbdfb03
 
5be3d23
 
bbdfb03
5be3d23
 
366cc4b
5be3d23
 
e547e36
bbdfb03
5be3d23
bbdfb03
5be3d23
 
 
 
 
 
 
 
 
 
bbdfb03
5be3d23
 
 
 
 
 
 
bbdfb03
 
5be3d23
 
 
 
 
 
 
 
 
 
bbdfb03
 
 
 
 
 
 
 
 
5be3d23
bbdfb03
 
 
 
 
 
 
 
 
 
 
 
 
5be3d23
bbdfb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366cc4b
5be3d23
bbdfb03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from threading import Thread
from qwen_vl_utils import process_vision_info
import torch
import time

# Specify the local cache path for models
local_path = "Fancy-MLLM/R1-OneVision-7B"

# Load model and processor
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    local_path, torch_dtype="auto", device_map="cpu"
)
model.cuda().eval()

processor = AutoProcessor.from_pretrained(local_path)

# Function to process image and text and generate the output
def generate_output(image, text, button_click):
    # Prepare input data
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
                {"type": "text", "text": text},
            ],
        }
    ]
    
    # Prepare inputs for the model
    text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    # print(text_input)
    # import pdb; pdb.set_trace()
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text_input],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=4096,
        top_p=0.001,
        top_k=1,
        temperature=0.01,
        repetition_penalty=1.0,
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    generated_text = ''
    
    try:
        for new_text in streamer:
            generated_text += new_text
            yield f"‎{generated_text}"
            # print(f"Current text: {generated_text}")  # 调试输出
            # yield generated_text  # 直接输出原始文本
    except Exception as e:
        print(f"Error: {e}")
        yield f"Error occurred: {str(e)}"

Css = """
#output-markdown {
    overflow-y: auto;
    white-space: pre-wrap; 
    word-wrap: break-word;
}

#output-markdown .math {
    overflow-x: auto;
    max-width: 100%;
}
.markdown-text {
    white-space: pre-wrap;
    word-wrap: break-word;
}
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""

with gr.Blocks(css=Css) as demo:
    gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Upload"),
            input_text = gr.Textbox(label="input your question")
            with gr.Row():
                with gr.Column():
                    clear_btn = gr.ClearButton([*input_image, input_text])
                with gr.Column():
                    submit_btn = gr.Button("Submit", variant="primary")

            gr.Examples(
                examples=[
                    ["20250208-205626.jpeg", "How many plums (see the picture) weigh as much as an apple?"],
                    ["38.jpg", "Each of the digits 2, 3, 4 and 5 will be placed in a square. Then there will be two numbers, which will be added together. What is the biggest number that they could make?"],
                    ["64.jpg", "Four of the numbers 1,3,4,5 and 7 are written into the boxes so that the calculation is correct.\nWhich number was not used?"],
                ],
                inputs=[input_image[0], input_text],
                label="Example Inputs"
            )
        with gr.Column():
            output_text = gr.Markdown(
                label="Generated Response",
                max_height="80vh",
                min_height="50vh",
                container=True,
                latex_delimiters=[{
                                        "left": "\\(",
                                        "right": "\\)",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{equation\}",
                                        "right": "\\end\{equation\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{align\}",
                                        "right": "\\end\{align\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{alignat\}",
                                        "right": "\\end\{alignat\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{gather\}",
                                        "right": "\\end\{gather\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{CD\}",
                                        "right": "\\end\{CD\}",
                                        "display": True
                                    }, {
                                        "left": "\\[",
                                        "right": "\\]",
                                        "display": True
                                    }],
                elem_id="qwen-md")
            


    submit_btn.click(
        fn=generate_output,
        inputs=[*input_image, input_text],
        outputs=output_text,
        queue=True
    )
demo.launch(share=True)