Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,826 Bytes
5be3d23 2ba0a0c 5be3d23 2ba0a0c 5be3d23 366cc4b 5be3d23 e547e36 bbdfb03 5be3d23 2ba0a0c 5be3d23 bbdfb03 5be3d23 2ba0a0c 5be3d23 2ba0a0c 5be3d23 2ba0a0c 5be3d23 2ba0a0c bbdfb03 2ba0a0c bbdfb03 5be3d23 2ba0a0c e3288b1 2ba0a0c f9438a5 366cc4b 5be3d23 bbdfb03 f9438a5 bbdfb03 f9438a5 bbdfb03 f9438a5 2ba0a0c bbdfb03 e3288b1 f9438a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from threading import Thread
from qwen_vl_utils import process_vision_info
import torch
import time
local_path = "Fancy-MLLM/R1-OneVision-7B"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
local_path, torch_dtype="auto", device_map="cpu"
)
processor = AutoProcessor.from_pretrained(local_path)
def generate_output(image, text, button_click):
# Prepare input data
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
{"type": "text", "text": text},
],
}
]
# Prepare inputs for the model
text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# print(text_input)
# import pdb; pdb.set_trace()
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_input],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=4096,
top_p=0.001,
top_k=1,
temperature=0.01,
repetition_penalty=1.0,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ''
try:
for new_text in streamer:
generated_text += new_text
yield f"{generated_text}"
# print(f"Current text: {generated_text}") # 调试输出
# yield generated_text # 直接输出原始文本
except Exception as e:
print(f"Error: {e}")
yield f"Error occurred: {str(e)}"
with gr.Blocks() as demo:
gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload") # **改回 PIL 处理**
input_text = gr.Textbox(label="Input your question")
with gr.Row():
clear_btn = gr.ClearButton([input_image, input_text])
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_text = gr.Markdown(elem_id="qwen-md", container=True)
submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
demo.launch(share=True)
# Css = """
# #output-markdown {
# overflow-y: auto;
# white-space: pre-wrap;
# word-wrap: break-word;
# }
# #output-markdown .math {
# overflow-x: auto;
# max-width: 100%;
# }
# .markdown-text {
# white-space: pre-wrap;
# word-wrap: break-word;
# }
# #qwen-md .katex-display { display: inline; }
# #qwen-md .katex-display>.katex { display: inline; }
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
# """
# # UI 组件
# with gr.Blocks(css=Css) as demo:
# gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
# with gr.Row():
# with gr.Column():
# input_image = gr.Image(type="pil", label="Upload")
# input_text = gr.Textbox(label="input your question")
# with gr.Row():
# with gr.Column():
# clear_btn = gr.ClearButton([input_image, input_text])
# with gr.Column():
# submit_btn = gr.Button("Submit", variant="primary")
# with gr.Column():
# output_text = gr.Markdown(
# label="Generated Response",
# max_height="80vh",
# min_height="50vh",
# container=True,
# latex_delimiters=[{
# "left": "\\(",
# "right": "\\)",
# "display": True
# }, {
# "left": "\\begin\{equation\}",
# "right": "\\end\{equation\}",
# "display": True
# }, {
# "left": "\\begin\{align\}",
# "right": "\\end\{align\}",
# "display": True
# }, {
# "left": "\\begin\{alignat\}",
# "right": "\\end\{alignat\}",
# "display": True
# }, {
# "left": "\\begin\{gather\}",
# "right": "\\end\{gather\}",
# "display": True
# }, {
# "left": "\\begin\{CD\}",
# "right": "\\end\{CD\}",
# "display": True
# }, {
# "left": "\\[",
# "right": "\\]",
# "display": True
# }],
# elem_id="qwen-md")
# submit_btn.click(
# fn=generate_output,
# inputs=[input_image, input_text],
# outputs=output_text,
# queue=True
# )
# demo.launch(share=True) |