Spaces:
Running
Running
File size: 11,953 Bytes
ddbbf37 3c5efcb ddbbf37 3c5efcb ddbbf37 3c5efcb ddbbf37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import math
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from .nn import timestep_embedding
def dec2bin(xinp, bits):
mask = 2 ** th.arange(bits - 1, -1, -1).to(xinp.device, xinp.dtype)
return xinp.unsqueeze(-1).bitwise_and(mask).ne(0).float()
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = th.arange(max_len).unsqueeze(1)
div_term = th.exp(th.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = th.zeros(1, max_len, d_model)
pe[0, :, 0::2] = th.sin(position * div_term)
pe[0, :, 1::2] = th.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
"""
Args:
x: Tensor, shape [batch_size, seq_len, embedding_dim]
"""
x = x + self.pe[0:1, :x.size(1)]
return self.dropout(x)
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout, activation):
super().__init__()
# We set d_ff as a default to 2048
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
self.activation = activation
def forward(self, x):
x = self.dropout(self.activation(self.linear_1(x)))
x = self.linear_2(x)
return x
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = th.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 1, -1e9)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = th.matmul(scores, v)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout = 0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1,2)
q = q.transpose(1,2)
v = v.transpose(1,2)# calculate attention using function we will define next
#TODO
# mask = mask.to('cuda:0')
scores = attention(q, k, v, self.d_k, mask, self.dropout)
# concatenate heads and put through final linear layer
concat = scores.transpose(1,2).contiguous().view(bs, -1, self.d_model)
output = self.out(concat)
return output
class EncoderLayer(nn.Module):
def __init__(self, d_model, heads, dropout, activation):
super().__init__()
self.norm_1 = nn.InstanceNorm1d(d_model)
self.norm_2 = nn.InstanceNorm1d(d_model)
self.self_attn = MultiHeadAttention(heads, d_model)
self.door_attn = MultiHeadAttention(heads, d_model)
self.gen_attn = MultiHeadAttention(heads, d_model)
self.ff = FeedForward(d_model, d_model*2, dropout, activation)
self.dropout = nn.Dropout(dropout)
def forward(self, x, door_mask, self_mask, gen_mask):
assert (gen_mask.max()==1 and gen_mask.min()==0), f"{gen_mask.max()}, {gen_mask.min()}"
x2 = self.norm_1(x)
x = x + self.dropout(self.door_attn(x2,x2,x2,door_mask)) \
+ self.dropout(self.self_attn(x2, x2, x2, self_mask)) \
+ self.dropout(self.gen_attn(x2, x2, x2, gen_mask))
x2 = self.norm_2(x)
x = x + self.dropout(self.ff(x2))
return x
class TransformerModel(nn.Module):
"""
The full Transformer model with timestep embedding.
"""
def __init__(
self,
in_channels,
condition_channels,
model_channels,
out_channels,
dataset,
use_checkpoint,
use_unet,
analog_bit,
):
super().__init__()
self.in_channels = in_channels
self.condition_channels = condition_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.time_channels = model_channels
self.use_checkpoint = use_checkpoint
self.analog_bit = analog_bit
self.use_unet = use_unet
self.num_layers = 4
# self.pos_encoder = PositionalEncoding(model_channels, 0.001)
# self.activation = nn.SiLU()
self.activation = nn.ReLU()
self.time_embed = nn.Sequential(
nn.Linear(self.model_channels, self.model_channels),
nn.SiLU(),
nn.Linear(self.model_channels, self.time_channels),
)
self.input_emb = nn.Linear(self.in_channels, self.model_channels)
self.condition_emb = nn.Linear(self.condition_channels, self.model_channels)
if use_unet:
self.unet = UNet(self.model_channels, 1)
self.transformer_layers = nn.ModuleList([EncoderLayer(self.model_channels, 4, 0.1, self.activation) for x in range(self.num_layers)])
# self.transformer_layers = nn.ModuleList([nn.TransformerEncoderLayer(self.model_channels, 4, self.model_channels*2, 0.1, self.activation, batch_first=True) for x in range(self.num_layers)])
self.output_linear1 = nn.Linear(self.model_channels, self.model_channels)
self.output_linear2 = nn.Linear(self.model_channels, self.model_channels//2)
self.output_linear3 = nn.Linear(self.model_channels//2, self.out_channels)
if not self.analog_bit:
self.output_linear_bin1 = nn.Linear(162+self.model_channels, self.model_channels)
self.output_linear_bin2 = EncoderLayer(self.model_channels, 1, 0.1, self.activation)
self.output_linear_bin3 = EncoderLayer(self.model_channels, 1, 0.1, self.activation)
self.output_linear_bin4 = nn.Linear(self.model_channels, 16)
print(f"Number of model parameters: {sum(p.numel() for p in self.parameters() if p.requires_grad)}")
def expand_points(self, points, connections):
def average_points(point1, point2):
points_new = (point1+point2)/2
return points_new
p1 = points
p1 = p1.view([p1.shape[0], p1.shape[1], 2, -1])
p5 = points[th.arange(points.shape[0])[:, None], connections[:,:,1].long()]
p5 = p5.view([p5.shape[0], p5.shape[1], 2, -1])
p3 = average_points(p1, p5)
p2 = average_points(p1, p3)
p4 = average_points(p3, p5)
p1_5 = average_points(p1, p2)
p2_5 = average_points(p2, p3)
p3_5 = average_points(p3, p4)
p4_5 = average_points(p4, p5)
points_new = th.cat((p1.view_as(points), p1_5.view_as(points), p2.view_as(points),
p2_5.view_as(points), p3.view_as(points), p3_5.view_as(points), p4.view_as(points), p4_5.view_as(points), p5.view_as(points)), 2)
return points_new.detach()
def create_image(self, points, connections, room_indices, img_size=256, res=200):
img = th.zeros((points.shape[0], 1, img_size, img_size), device=points.device)
points = (points+1)*(img_size//2)
points[points>=img_size] = img_size-1
points[points<0] = 0
p1 = points
p2 = points[th.arange(points.shape[0])[:, None], connections[:,:,1].long()]
slope = (p2[:,:,1]-p1[:,:,1])/((p2[:,:,0]-p1[:,:,0]))
slope[slope.isnan()] = 0
slope[slope.isinf()] = 1
m = th.linspace(0, 1, res, device=points.device)
new_shape = [p2.shape[0], res, p2.shape[1], p2.shape[2]]
new_p2 = p2.unsqueeze(1).expand(new_shape)
new_p1 = p1.unsqueeze(1).expand(new_shape)
new_room_indices = room_indices.unsqueeze(1).expand([p2.shape[0], res, p2.shape[1], 1])
inc = new_p2 - new_p1
xs = m.view(1,-1,1) * inc[:,:,:,0]
xs = xs + new_p1[:,:,:,0]
xs = xs.long()
x_inc = th.where(inc[:,:,:,0]==0, inc[:,:,:,1], inc[:,:,:,0])
x_inc = m.view(1,-1,1) * x_inc
ys = x_inc * slope.unsqueeze(1) + new_p1[:,:,:,1]
ys = ys.long()
img[th.arange(xs.shape[0])[:, None], :, xs.view(img.shape[0], -1), ys.view(img.shape[0], -1)] = new_room_indices.reshape(img.shape[0], -1, 1).float()
return img.detach()
def forward(self, x, timesteps, xtalpha, epsalpha, is_syn=False, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x S x C] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x S x C] Tensor of outputs.
"""
# prefix = 'syn_' if is_syn else ''
prefix = 'syn_' if is_syn else ''
x = x.permute([0, 2, 1]).float() # -> convert [N x C x S] to [N x S x C]
if not self.analog_bit:
x = self.expand_points(x, kwargs[f'{prefix}connections'])
# Different input embeddings (Input, Time, Conditions)
#TODO---------------------------------------------------------------
# x = x.to('cuda:0')
# timesteps = timesteps.to(x.device)
# print(x.device)
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
time_emb = time_emb.unsqueeze(1)
input_emb = self.input_emb(x)
if self.condition_channels>0:
cond = None
for key in [f'{prefix}room_types', f'{prefix}corner_indices', f'{prefix}room_indices']:
if cond is None:
cond = kwargs[key]
else:
cond = th.cat((cond, kwargs[key]), 2)
#TODO
# cond = cond.to('cuda:0')
cond_emb = self.condition_emb(cond.float())
# PositionalEncoding and DM model
out = input_emb + cond_emb + time_emb.repeat((1, input_emb.shape[1], 1))
for layer in self.transformer_layers:
out = layer(out, kwargs[f'{prefix}door_mask'], kwargs[f'{prefix}self_mask'], kwargs[f'{prefix}gen_mask'])
out_dec = self.output_linear1(out)
out_dec = self.activation(out_dec)
out_dec = self.output_linear2(out_dec)
out_dec = self.output_linear3(out_dec)
if not self.analog_bit:
out_bin_start = x*xtalpha.repeat([1,1,9]) - out_dec.repeat([1,1,9]) * epsalpha.repeat([1,1,9])
out_bin = (out_bin_start/2 + 0.5) # -> [0,1]
out_bin = out_bin * 256 #-> [0, 256]
out_bin = dec2bin(out_bin.round().int(), 8)
out_bin_inp = out_bin.reshape([x.shape[0], x.shape[1], 16*9])
out_bin_inp[out_bin_inp==0] = -1
out_bin = th.cat((out_bin_start, out_bin_inp, cond_emb), 2)
out_bin = self.activation(self.output_linear_bin1(out_bin))
out_bin = self.output_linear_bin2(out_bin, kwargs[f'{prefix}door_mask'], kwargs[f'{prefix}self_mask'], kwargs[f'{prefix}gen_mask'])
out_bin = self.output_linear_bin3(out_bin, kwargs[f'{prefix}door_mask'], kwargs[f'{prefix}self_mask'], kwargs[f'{prefix}gen_mask'])
out_bin = self.output_linear_bin4(out_bin)
out_bin = out_bin.permute([0, 2, 1]) # -> convert back [N x S x C] to [N x C x S]
out_dec = out_dec.permute([0, 2, 1]) # -> convert back [N x S x C] to [N x C x S]
if not self.analog_bit:
return out_dec, out_bin
else:
return out_dec, None
|