Spaces:
Running
Running
import argparse | |
import inspect | |
from . import gaussian_diffusion as gd | |
from .respace import SpacedDiffusion, space_timesteps | |
from .transformer import TransformerModel | |
def diffusion_defaults(): | |
""" | |
Defaults for image and classifier training. | |
""" | |
return dict( | |
analog_bit=False, | |
learn_sigma=False, | |
# diffusion_steps=25, | |
diffusion_steps=1000, | |
noise_schedule="cosine", | |
timestep_respacing="ddim100", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
# target_set=-1, | |
# target_set=4, | |
# target_set=5, | |
# target_set=6, | |
# target_set=7, | |
target_set=8, | |
set_name='', | |
) | |
def update_arg_parser(args): | |
args.num_channels = 512 | |
num_coords = 16 if args.analog_bit else 2 | |
if args.dataset=='rplan': | |
args.input_channels = num_coords + (2*8 if not args.analog_bit else 0) # . , . , . , . , ' | |
args.condition_channels = 89 | |
args.out_channels = num_coords * 1 | |
args.use_unet = False | |
elif args.dataset=='st3d': | |
args.input_channels = num_coords + (2*8 if not args.analog_bit else 0) # . , . , . , . , ' | |
args.condition_channels = 89 | |
args.out_channels = num_coords * 1 | |
args.use_unet = False | |
elif args.dataset=='zind': | |
args.input_channels = num_coords + 2 * 8 | |
args.condition_channels = 89 | |
args.out_channels = num_coords * 1 | |
args.use_unet = False | |
elif args.dataset=='layout': | |
args.use_unet = True | |
pass #TODO NEED TO COMPLETE | |
elif args.dataset=='outdoor': | |
args.use_unet = True | |
pass #TODO NEED TO COMPLETE | |
else: | |
assert False, "DATASET NOT FOUND" | |
def model_and_diffusion_defaults(): | |
""" | |
Defaults for image training. | |
""" | |
res = dict( | |
dataset='rplan', | |
# dataset='', | |
use_checkpoint=False, | |
input_channels=0, | |
condition_channels=0, | |
out_channels=0, | |
use_unet=False, | |
num_channels=128 | |
) | |
res.update(diffusion_defaults()) | |
return res | |
def create_model_and_diffusion( | |
input_channels, | |
condition_channels, | |
num_channels, | |
out_channels, | |
dataset, | |
use_checkpoint, | |
use_unet, | |
learn_sigma, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
analog_bit, | |
target_set, | |
set_name, | |
): | |
model = TransformerModel(input_channels, condition_channels, num_channels, out_channels, dataset, use_checkpoint, use_unet, analog_bit) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
) | |
return model, diffusion | |
def create_gaussian_diffusion( | |
*, | |
steps=1000, | |
learn_sigma=False, | |
sigma_small=False, | |
noise_schedule="linear", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
timestep_respacing="", | |
): | |
betas = gd.get_named_beta_schedule(noise_schedule, steps) | |
if use_kl: | |
loss_type = gd.LossType.RESCALED_KL | |
elif rescale_learned_sigmas: | |
loss_type = gd.LossType.RESCALED_MSE | |
else: | |
loss_type = gd.LossType.MSE | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=( | |
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X | |
), | |
model_var_type=( | |
( | |
gd.ModelVarType.FIXED_LARGE | |
if not sigma_small | |
else gd.ModelVarType.FIXED_SMALL | |
) | |
if not learn_sigma | |
else gd.ModelVarType.LEARNED_RANGE | |
), | |
loss_type=loss_type, | |
rescale_timesteps=rescale_timesteps, | |
) | |
def add_dict_to_argparser(parser, default_dict): | |
for k, v in default_dict.items(): | |
v_type = type(v) | |
if v is None: | |
v_type = str | |
elif isinstance(v, bool): | |
v_type = str2bool | |
parser.add_argument(f"--{k}", default=v, type=v_type) | |
def args_to_dict(args, keys): | |
return {k: getattr(args, k) for k in keys} | |
def str2bool(v): | |
""" | |
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse | |
""" | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("boolean value expected") | |