File size: 5,285 Bytes
7801205
 
 
 
c02fad1
18f25b9
2fa3177
 
5dd0ea6
d21c058
2cac7f2
 
 
 
7801205
 
 
2cac7f2
 
 
60723f6
2cac7f2
 
 
e388d15
 
 
 
2cac7f2
2fa3177
 
 
50a7b79
 
2fa3177
1d7bf30
 
 
 
2fa3177
 
1d7bf30
 
 
 
62e71f5
 
 
1d7bf30
 
 
50a7b79
1d7bf30
50a7b79
 
1d7bf30
2fa3177
 
 
1d7bf30
50a7b79
2cac7f2
5dd0ea6
7801205
 
 
 
 
6c748cb
 
9c5c250
6c748cb
7801205
7a2ca4b
4d847b9
7a2ca4b
 
 
 
7801205
 
ed9fa70
7801205
2cac7f2
7801205
 
 
 
 
 
5dd0ea6
6c748cb
7801205
c5b67f9
 
7801205
 
6c748cb
 
7801205
6c748cb
5dd0ea6
6c748cb
2fa3177
 
 
 
 
 
 
c5b67f9
9c5c250
5dd0ea6
 
7801205
 
 
c5b67f9
6670942
7801205
 
2fa3177
1d7bf30
2fa3177
1d7bf30
2fa3177
2cac7f2
 
7801205
 
812aa8d
18f25b9
812aa8d
18f25b9
 
812aa8d
18f25b9
2cac7f2
 
 
7801205
 
94ba9ed
5dd0ea6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
import subprocess
import os
import shutil
from huggingface_hub import hf_hub_download
import torch
import nibabel as nib
import matplotlib.pyplot as plt
import spaces  # Import spaces for GPU decoration
import numpy as np

# Define paths
MODEL_DIR = "./model"  # Local directory to store the downloaded model
DATASET_DIR = os.path.join(MODEL_DIR, "Dataset004_WML")  # Directory for Dataset004_WML
INPUT_DIR = "/tmp/input"
OUTPUT_DIR = "/tmp/output"

# Hugging Face Model Repository
REPO_ID = "FrancescoLR/FLAMeS-model"  # Replace with your actual model repository ID

# Function to download the Dataset004_WML folder
def download_model():
    if not os.path.exists(DATASET_DIR):
        os.makedirs(DATASET_DIR, exist_ok=True)
        print("Downloading Dataset004_WML.zip...")
        zip_path = hf_hub_download(repo_id=REPO_ID, filename="Dataset004_WML.zip", cache_dir=MODEL_DIR)
        subprocess.run(["unzip", "-o", zip_path, "-d", MODEL_DIR])
        print("Dataset004_WML downloaded and extracted.")

def extract_middle_slice(nifti_path, output_image_path):
    """
    Extracts a middle slice from a 3D NIfTI image and saves it as a PNG file.
    The figure size is adjusted dynamically based on the slice's aspect ratio
    and scaled to be 50% smaller.
    """
    import nibabel as nib
    import matplotlib.pyplot as plt

    # Load NIfTI image and get the data
    img = nib.load(nifti_path)
    data = img.get_fdata()
    
    # Get the middle slice along the z-axis
    middle_slice_index = data.shape[2] // 2
    slice_data = data[:, :, middle_slice_index]
    
    # Rotate the slice 90 degrees clockwise
    slice_data = np.rot90(slice_data, k=-1)

    # Calculate aspect ratio
    height, width = slice_data.shape
    aspect_ratio = width / height

    # Dynamically adjust figure size based on aspect ratio and scale down by 0.5
    plt.figure(figsize=(4 * aspect_ratio, 4))  # Height scaled to 3, width scaled proportionally
    plt.imshow(slice_data, cmap="gray")
    plt.axis("off")
    plt.savefig(output_image_path, bbox_inches="tight", pad_inches=0)
    plt.close()


# Function to run nnUNet inference
@spaces.GPU  # Decorate the function to allocate GPU for its execution
def run_nnunet_predict(nifti_file):
    # Prepare directories
    os.makedirs(INPUT_DIR, exist_ok=True)
    os.makedirs(OUTPUT_DIR, exist_ok=True)

    # Extract the original filename without the extension
    original_filename = os.path.basename(nifti_file.name)
    base_filename = original_filename.replace(".nii.gz", "")
    
    # Save the uploaded file to the input directory
    input_path = os.path.join(INPUT_DIR, "image_0000.nii.gz")
    os.rename(nifti_file.name, input_path)  # Move the uploaded file to the expected input location
    
    # Debugging: List files in the /tmp/input directory
    print("Files in /tmp/input:")
    print(os.listdir(INPUT_DIR))

    # Set environment variables for nnUNet
    os.environ["nnUNet_results"] = MODEL_DIR

    # Construct and run the nnUNetv2_predict command
    command = [
        "nnUNetv2_predict",
        "-i", INPUT_DIR,
        "-o", OUTPUT_DIR,
        "-d", "004",                  # Dataset ID
        "-c", "3d_fullres",           # Configuration
        "-tr", "nnUNetTrainer_8000epochs",
        "-device", "cuda"  # Explicitly use GPU
    ]
    print("Files in /tmp/output:")
    print(os.listdir(OUTPUT_DIR))
    try:
        subprocess.run(command, check=True)

        # Rename the output file to match the original input filename
        output_file = os.path.join(OUTPUT_DIR, "image.nii.gz")
        new_output_file = os.path.join(OUTPUT_DIR, f"{base_filename}_LesionMask.nii.gz")
        if os.path.exists(output_file):
            os.rename(output_file, new_output_file)

            # Extract and save 2D slices
            input_slice_path = os.path.join(OUTPUT_DIR, f"{base_filename}_input_slice.png")
            output_slice_path = os.path.join(OUTPUT_DIR, f"{base_filename}_output_slice.png")
            extract_middle_slice(input_path, input_slice_path)
            extract_middle_slice(new_output_file, output_slice_path)

            # Return paths for the Gradio interface
            return new_output_file, input_slice_path, output_slice_path
        else:
            return "Error: Output file not found."
    except subprocess.CalledProcessError as e:
        return f"Error: {e}"

# Gradio Interfaceinterface = gr.Interface(
interface = gr.Interface(
    fn=run_nnunet_predict,
    inputs=gr.File(label="Upload FLAIR Image (.nii.gz)"),
    outputs=[
        gr.File(label="Download Segmentation Mask"),
        gr.Image(label="Input Middle Slice"),
        gr.Image(label="Output Middle Slice")
    ],
    title="FLAMeS: Multiple Sclerosis Lesion Segmentation",
    description="Upload a skull-stripped FLAIR image (.nii.gz) to generate a binary segmentation of MS lesions."
)

# Debugging GPU environment
if torch.cuda.is_available():
    print(f"GPU is available: {torch.cuda.get_device_name(0)}")
else:
    print("No GPU available. Falling back to CPU.")
    os.system("nvidia-smi")  # Check if NVIDIA tools are available

# Download model files before launching the app
download_model()

# Launch the app
if __name__ == "__main__":
    interface.launch(share=True)