File size: 6,410 Bytes
fc39101
 
0af6850
fc39101
 
 
 
 
 
 
 
 
0af6850
fc39101
 
0af6850
fc39101
 
a94ff47
fc39101
 
 
 
4fd36e5
fc39101
0af6850
fc39101
a94ff47
fc39101
bd29fc5
fc39101
 
 
 
 
a94ff47
fc39101
 
0af6850
fc39101
 
 
 
 
 
 
 
0af6850
fc39101
bd29fc5
fc39101
 
 
48c9cbf
fc39101
bd29fc5
fc39101
 
bd29fc5
fc39101
bd29fc5
fc39101
 
 
 
 
bd29fc5
fc39101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import time
import logging
import gradio as gr
import os  
from datetime import datetime
from datasets import Dataset, load_dataset
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from groq import Groq
from langchain.memory import ConversationBufferMemory  

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

groq_api_key = os.environ.get("GROQ_API_KEY")
hf_api_key = os.environ.get("HF_API_KEY")

if not groq_api_key:
    raise ValueError("Groq API key not found in environment variables.")
if not hf_api_key:
    raise ValueError("Hugging Face API key not found in environment variables.")

client = Groq(api_key=groq_api_key)

hf_token = hf_api_key

embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")

DATASET_NAME = "chat_history"
try:
    dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token)
except Exception:
    dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []})

def save_chat_to_dataset(user_message, bot_message):
    """Save chat history to Hugging Face Dataset."""
    try:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message}
        
        df = dataset.to_pandas()
        df = df.append(new_row, ignore_index=True)
        updated_dataset = Dataset.from_pandas(df)
        
        updated_dataset.push_to_hub(DATASET_NAME, token=hf_token)
    except Exception as e:
        logger.error(f"Error saving chat history to dataset: {e}")

def process_pdf_with_langchain(pdf_path):
    """Process a PDF file and create a FAISS retriever."""
    try:
        loader = PyPDFLoader(pdf_path)  # Fixed indentation
        documents = loader.load()

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
        split_documents = text_splitter.split_documents(documents)

        vectorstore = FAISS.from_documents(split_documents, embeddings)

        retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
        return retriever
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        raise

def generate_response(query, memory, retriever=None, use_pdf_context=False):
    """Generate a response using the Groq model and retrieved PDF context."""
    try:
        knowledge = ""

        if retriever and use_pdf_context: 
            relevant_docs = retriever.get_relevant_documents(query)
            knowledge += "\n".join([doc.page_content for doc in relevant_docs])

        chat_history = memory.load_memory_variables({}).get("chat_history", "")
        context = f"""
            You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT). 
            Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**. 
            Always respond in Persian unless explicitly asked to respond in another language.
            **Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
            Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
            
        if knowledge:
            context += f"\n\nRelevant Knowledge:\n{knowledge}"
        if chat_history:
            context += f"\n\nChat History:\n{chat_history}"

        context += f"\n\nYou: {query}\nParvizGPT:"

        response = "در حال پردازش..."
        retries = 3
        for attempt in range(retries):
            try:
                chat_completion = client.chat.completions.create(
                    messages=[{"role": "user", "content": context}],
                    model="deepseek-r1-distill-llama-70b"
                )
                response = chat_completion.choices[0].message.content.strip()
                # Save the conversation to memory
                memory.save_context({"input": query}, {"output": response})
                break
            except Exception as e:
                logger.error(f"Attempt {attempt + 1} failed: {e}")
                time.sleep(2)

        return response, memory
    except Exception as e:
        logger.error(f"Error generating response: {e}")
        return f"Error: {e}", memory

def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
    """Handle the Gradio interface interactions."""
    global retriever

    if pdf_file is not None and use_pdf_context:  
        try:
            retriever = process_pdf_with_langchain(pdf_file.name)
        except Exception as e:
            return chat_box + [("Error", f"Error processing PDF: {e}")], memory

    chat_box.append(("ParvizGPT", "در حال پردازش..."))
    response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
    
    chat_box[-1] = ("You", user_message) 
    chat_box.append(("ParvizGPT", response))
    
    save_chat_to_dataset(user_message, response)
    
    return chat_box, memory

def clear_memory(memory):
    """Clear the conversation memory."""
    memory.clear()
    return [], memory

retriever = None

with gr.Blocks() as interface:
    gr.Markdown("## ParvizGPT")
    chat_box = gr.Chatbot(label="Chat History", value=[])
    user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
    use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
    clear_memory_btn = gr.Button("Clear Memory", interactive=True)
    pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
    submit_btn = gr.Button("Submit")
    
    memory_state = gr.State(ConversationBufferMemory())
    
    submit_btn.click(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context], outputs=[chat_box, memory_state])
    user_message.submit(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context], outputs=[chat_box, memory_state])
    clear_memory_btn.click(clear_memory, inputs=[memory_state], outputs=[chat_box, memory_state])

interface.launch()