Spaces:
Running
Running
File size: 6,410 Bytes
fc39101 0af6850 fc39101 0af6850 fc39101 0af6850 fc39101 a94ff47 fc39101 4fd36e5 fc39101 0af6850 fc39101 a94ff47 fc39101 bd29fc5 fc39101 a94ff47 fc39101 0af6850 fc39101 0af6850 fc39101 bd29fc5 fc39101 48c9cbf fc39101 bd29fc5 fc39101 bd29fc5 fc39101 bd29fc5 fc39101 bd29fc5 fc39101 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import time
import logging
import gradio as gr
import os
from datetime import datetime
from datasets import Dataset, load_dataset
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from groq import Groq
from langchain.memory import ConversationBufferMemory
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
groq_api_key = os.environ.get("GROQ_API_KEY")
hf_api_key = os.environ.get("HF_API_KEY")
if not groq_api_key:
raise ValueError("Groq API key not found in environment variables.")
if not hf_api_key:
raise ValueError("Hugging Face API key not found in environment variables.")
client = Groq(api_key=groq_api_key)
hf_token = hf_api_key
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
DATASET_NAME = "chat_history"
try:
dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token)
except Exception:
dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []})
def save_chat_to_dataset(user_message, bot_message):
"""Save chat history to Hugging Face Dataset."""
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message}
df = dataset.to_pandas()
df = df.append(new_row, ignore_index=True)
updated_dataset = Dataset.from_pandas(df)
updated_dataset.push_to_hub(DATASET_NAME, token=hf_token)
except Exception as e:
logger.error(f"Error saving chat history to dataset: {e}")
def process_pdf_with_langchain(pdf_path):
"""Process a PDF file and create a FAISS retriever."""
try:
loader = PyPDFLoader(pdf_path) # Fixed indentation
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
def generate_response(query, memory, retriever=None, use_pdf_context=False):
"""Generate a response using the Groq model and retrieved PDF context."""
try:
knowledge = ""
if retriever and use_pdf_context:
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = f"""
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT).
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
Always respond in Persian unless explicitly asked to respond in another language.
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
response = "در حال پردازش..."
retries = 3
for attempt in range(retries):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model="deepseek-r1-distill-llama-70b"
)
response = chat_completion.choices[0].message.content.strip()
# Save the conversation to memory
memory.save_context({"input": query}, {"output": response})
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
time.sleep(2)
return response, memory
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}", memory
def gradio_interface(user_message, chat_box, memory, pdf_file=None, use_pdf_context=False):
"""Handle the Gradio interface interactions."""
global retriever
if pdf_file is not None and use_pdf_context:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")], memory
chat_box.append(("ParvizGPT", "در حال پردازش..."))
response, memory = generate_response(user_message, memory, retriever=retriever, use_pdf_context=use_pdf_context)
chat_box[-1] = ("You", user_message)
chat_box.append(("ParvizGPT", response))
save_chat_to_dataset(user_message, response)
return chat_box, memory
def clear_memory(memory):
"""Clear the conversation memory."""
memory.clear()
return [], memory
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
submit_btn = gr.Button("Submit")
memory_state = gr.State(ConversationBufferMemory())
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context], outputs=[chat_box, memory_state])
user_message.submit(gradio_interface, inputs=[user_message, chat_box, memory_state, pdf_file, use_pdf_context], outputs=[chat_box, memory_state])
clear_memory_btn.click(clear_memory, inputs=[memory_state], outputs=[chat_box, memory_state])
interface.launch() |