File size: 10,123 Bytes
9dac3f4
 
 
e0b3b4f
20b2044
d509284
57a62f9
a2e2c3e
0db5687
5c1ed9e
d509284
d374fec
9dac3f4
 
 
e0b3b4f
9dac3f4
 
 
 
 
 
 
 
 
d509284
9dac3f4
 
 
 
 
d509284
 
 
9dac3f4
 
 
 
e0b3b4f
9dac3f4
 
20b2044
e89bfb2
482cb98
 
e89bfb2
 
482cb98
e89bfb2
 
482cb98
e89bfb2
482cb98
e89bfb2
 
 
 
 
 
 
482cb98
e89bfb2
 
482cb98
 
 
 
20b2044
482cb98
 
20b2044
9dac3f4
 
20b2044
482cb98
e0b3b4f
20b2044
9dac3f4
20b2044
9dac3f4
 
 
4bfe417
482cb98
 
 
 
4bfe417
43b4a2a
 
e0ba642
 
43b4a2a
e0ba642
43b4a2a
e0ba642
 
 
 
 
 
 
 
 
 
 
 
43b4a2a
 
590726d
 
 
e0ba642
590726d
 
 
 
7844e16
e0ba642
 
43b4a2a
e0ba642
43b4a2a
 
e0ba642
 
c2d21ca
e0ba642
c2d21ca
 
29d18fd
43b4a2a
 
7844e16
43b4a2a
e0ba642
43b4a2a
7844e16
43b4a2a
590726d
 
43b4a2a
590726d
 
 
43b4a2a
590726d
 
 
20b2044
e0b3b4f
d509284
e0b3b4f
d509284
 
 
9dac3f4
d509284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590726d
d509284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b3b4f
d53a07b
 
 
 
590726d
d53a07b
bfd0ee5
d509284
 
 
 
e0b3b4f
9dac3f4
d509284
 
 
 
 
 
9dac3f4
 
e0b3b4f
9dac3f4
e0b3b4f
9dac3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b3b4f
 
 
 
 
 
 
 
 
 
 
9dac3f4
 
 
e0b3b4f
9dac3f4
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import os
import whisper
import requests
from flask import Flask, request, jsonify, render_template
from dotenv import load_dotenv
from deepgram import DeepgramClient, PrerecordedOptions
import tempfile
import json
import subprocess
from youtube_transcript_api import YouTubeTranscriptApi


import warnings
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")

app = Flask(__name__)
print("APP IS RUNNING, ANIKET")

# Load the .env file
load_dotenv()

print("ENV LOADED, ANIKET")

# Fetch the API key from the .env file
API_KEY = os.getenv("FIRST_API_KEY")
DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")

# Ensure the API key is loaded correctly
if not API_KEY:
    raise ValueError("API Key not found. Make sure it is set in the .env file.")

if not DEEPGRAM_API_KEY:
    raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")

GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY

@app.route("/", methods=["GET"])
def health_check():
    return jsonify({"status": "success", "message": "API is running successfully!"}), 200



def download_audio(url, temp_audio_path):
    """Download audio (WAV format) from the given URL and save it to temp_audio_path."""
    response = requests.get(url, stream=True)
    if response.status_code == 200:
        with open(temp_audio_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=1024):
                f.write(chunk)
        print(f"Audio downloaded successfully to {temp_audio_path}")
    else:
        raise Exception(f"Failed to download audio, status code: {response.status_code}")

@app.route('/process-audio', methods=['POST'])
def process_audio():
    if 'audioUrl' not in request.json:
        return jsonify({"error": "No audio URL provided"}), 400

    audio_url = request.json['audioUrl']
    temp_audio_path = None

    try:
        # Step 1: Download the WAV file from the provided URL
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
            temp_audio_path = temp_audio_file.name
            download_audio(audio_url, temp_audio_path)

        # Step 2: Transcribe the downloaded WAV file synchronously
        transcription = transcribe_audio(temp_audio_path)

        if not transcription:
            return jsonify({"error": "Audio transcription failed"}), 500

        # Step 3: Generate structured recipe information using Gemini API synchronously
        structured_data = query_gemini_api(transcription)

        return jsonify(structured_data)

    except Exception as e:
        return jsonify({"error": str(e)}), 500

    finally:
        # Clean up temporary audio file
        if temp_audio_path and os.path.exists(temp_audio_path):
            os.remove(temp_audio_path)
            print(f"Temporary audio file deleted: {temp_audio_path}")



import logging
logging.basicConfig(level=logging.DEBUG)

from urllib.parse import urlparse, parse_qs

def extract_video_id(youtube_url):
    """
    Extracts the video ID from a YouTube URL.
    """
    try:
        parsed_url = urlparse(youtube_url)
        query_params = parse_qs(parsed_url.query)
        video_id = query_params.get('v', [None])[0]
        return video_id
    except Exception as e:
        print(f"Error extracting video ID: {e}")
        return None


@app.route('/process-youtube', methods=['POST'])
def process_youtube():
    youtube_url = request.json.get('youtube_url')
    
    if not youtube_url:
        return jsonify({"error": "No YouTube URL provided"}), 400

    try:
        # Extract the video ID from the YouTube URL
        video_id = extract_video_id(youtube_url)
        
        logging.debug(f"Processing video ID: {video_id}")
        
        try:
            # Fetch transcript
            # transcript_data = YouTubeTranscriptApi.get_transcript(video_id)
            transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
            transcript_data = transcript_list.find_generated_transcript(['en'])

            transcript = transcript_data.fetch()[0]
            
        except Exception as e:
            logging.error(f"Error fetching transcript for {video_id}: {e}")
            return jsonify({"error": f"Could not retrieve transcript for video {video_id}: {str(e)}"}), 500

        # Concatenate transcript
        # transcript = " ".join([segment['text'] for segment in transcript_data])
        logging.debug(f"Transcript: {transcript}")

        # Send to Gemini API
        structured_data = query_gemini_api(transcript)

        # Return structured data
        return jsonify(structured_data)

    except Exception as e:
        logging.error(f"Unexpected error: {str(e)}")
        return jsonify({"error": str(e)}), 500



def transcribe_audio(wav_file_path):
    """
    Transcribe audio from a video file using Deepgram API synchronously.
    
    Args:
        wav_file_path (str): Path to save the converted WAV file.

    Returns:
        dict: A dictionary containing status, transcript, or error message.
    """
    print("Entered the transcribe_audio function")
    try:
        # Initialize Deepgram client
        deepgram = DeepgramClient(DEEPGRAM_API_KEY)

        # Open the converted WAV file
        with open(wav_file_path, 'rb') as buffer_data:
            payload = {'buffer': buffer_data}

            # Configure transcription options
            options = PrerecordedOptions(
                smart_format=True, model="nova-2", language="en-US"
            )

            # Transcribe the audio
            response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)

            # Check if the response is valid
            if response:
                # print("Request successful! Processing response.")

                # Convert response to JSON string
                try:
                    data_str = response.to_json(indent=4)
                except AttributeError as e:
                    return {"status": "error", "message": f"Error converting response to JSON: {e}"}

                # Parse the JSON string to a Python dictionary
                try:
                    data = json.loads(data_str)
                except json.JSONDecodeError as e:
                    return {"status": "error", "message": f"Error parsing JSON string: {e}"}

                # Extract the transcript
                try:
                    transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
                except KeyError as e:
                    return {"status": "error", "message": f"Error extracting transcript: {e}"}

                print(f"Transcript obtained: {transcript}")
                # Step: Save the transcript to a text file
                transcript_file_path = "transcript_from_transcribe_audio.txt"
                with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
                    transcript_file.write(transcript)
                # print(f"Transcript saved to file: {transcript_file_path}")
                
                return transcript
            else:
                return {"status": "error", "message": "Invalid response from Deepgram."}

    except FileNotFoundError:
        return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
    except Exception as e:
        return {"status": "error", "message": f"Unexpected error: {e}"}
    finally:
        # Clean up the temporary WAV file
        if os.path.exists(wav_file_path):
            os.remove(wav_file_path)
            print(f"Temporary WAV file deleted: {wav_file_path}")


def query_gemini_api(transcription):
    """
    Send transcription text to Gemini API and fetch structured recipe information synchronously.
    """
    try:
        # Define the structured prompt
        prompt = (
            "Analyze the provided cooking video transcription and extract the following structured information:\n"
            "1. Recipe Name: Identify the name of the dish being prepared.\n"
            "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
            "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
            "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
            "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
            "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
            "7. Serving size: In count of people or portion size.\n"
            "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
            "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
            f"Text: {transcription}\n"
        )

        # Prepare the payload and headers
        payload = {
            "contents": [
                {
                    "parts": [
                        {"text": prompt}
                    ]
                }
            ]
        }
        headers = {"Content-Type": "application/json"}

        # Send request to Gemini API synchronously
        response = requests.post(
            f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
            json=payload,
            headers=headers,
        )

        # Raise error if response code is not 200
        response.raise_for_status()

        data = response.json()

        return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")

    except requests.exceptions.RequestException as e:
        print(f"Error querying Gemini API: {e}")
        return {"error": str(e)}


if __name__ == '__main__':
    app.run(debug=True)