Spaces:
Sleeping
Sleeping
File size: 6,581 Bytes
85ad390 bcde0da b489b3f 85ad390 d86b86d bcde0da 85ad390 bcde0da d86b86d b489b3f d86b86d 1552b06 b489b3f 85ad390 4f13b31 85ad390 4f13b31 85ad390 b489b3f 85ad390 b489b3f 85ad390 d86b86d 1552b06 d86b86d 1552b06 d86b86d 1552b06 85ad390 9cc14fb b489b3f 85ad390 b489b3f 9cc14fb b489b3f 9cc14fb b489b3f 9cc14fb 85ad390 b489b3f 85ad390 b489b3f 85ad390 b489b3f 85ad390 b489b3f 85ad390 9cc14fb b489b3f 85ad390 9cc14fb 4f13b31 b489b3f 4f13b31 b489b3f 85ad390 b489b3f 9cc14fb b489b3f 85ad390 b489b3f 85ad390 b489b3f 9cc14fb 85ad390 b489b3f 9cc14fb b489b3f 8067321 b489b3f 8067321 b489b3f 8067321 b489b3f 85ad390 b489b3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from pydrive2.auth import GoogleAuth
from pydrive2.drive import GoogleDrive
import os
import gradio as gr
from datasets import load_dataset, Dataset, concatenate_datasets
import pandas as pd
from PIL import Image
from tqdm import tqdm
import logging
import yaml
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load settings
if not os.path.exists("settings.yaml"):
raise FileNotFoundError("settings.yaml file is missing. Please add it with 'client_secrets_file'.")
with open('settings.yaml', 'r') as file:
settings = yaml.safe_load(file)
# Utility Functions
def safe_load_dataset(dataset_name):
"""Load Hugging Face dataset safely."""
try:
dataset = load_dataset(dataset_name)
return dataset, len(dataset['train']) if 'train' in dataset else 0
except Exception:
logger.info("No existing dataset found. Starting fresh.")
return None, 0
def is_valid_image(file_path):
"""Check if a file is a valid image."""
try:
with Image.open(file_path) as img:
img.verify()
return True
except:
return False
# DatasetManager Class
class DatasetManager:
def __init__(self, local_images_dir="downloaded_cards"):
self.local_images_dir = local_images_dir
self.drive = None
self.dataset_name = "GotThatData/sports-cards"
os.makedirs(local_images_dir, exist_ok=True)
def authenticate_drive(self):
"""Authenticate with Google Drive."""
try:
gauth = GoogleAuth()
gauth.settings['client_config_file'] = settings['client_secrets_file']
# Try to load saved credentials
gauth.LoadCredentialsFile("credentials.txt")
if gauth.credentials is None:
gauth.LocalWebserverAuth()
elif gauth.access_token_expired:
gauth.Refresh()
else:
gauth.Authorize()
gauth.SaveCredentialsFile("credentials.txt")
self.drive = GoogleDrive(gauth)
return True, "Successfully authenticated with Google Drive"
except Exception as e:
return False, f"Authentication failed: {str(e)}"
def download_and_rename_files(self, drive_folder_id, naming_convention):
"""Download files from Google Drive and rename them."""
if not self.drive:
return False, "Google Drive not authenticated", []
try:
query = f"'{drive_folder_id}' in parents and trashed=false"
file_list = self.drive.ListFile({'q': query}).GetList()
if not file_list:
return False, "No files found in the specified folder.", []
existing_dataset, start_index = safe_load_dataset(self.dataset_name)
renamed_files = []
for i, file in enumerate(tqdm(file_list, desc="Downloading files", unit="file")):
if 'mimeType' in file and 'image' in file['mimeType'].lower():
new_filename = f"{naming_convention}_{start_index + i + 1}.jpg"
file_path = os.path.join(self.local_images_dir, new_filename)
file.GetContentFile(file_path)
if is_valid_image(file_path):
renamed_files.append({
'file_path': file_path,
'original_name': file['title'],
'new_name': new_filename
})
logger.info(f"Downloaded and renamed: {file['title']} -> {new_filename}")
else:
logger.error(f"Invalid image detected, removing {file_path}")
os.remove(file_path)
return True, f"Processed {len(renamed_files)} images", renamed_files
except Exception as e:
return False, f"Error during download: {str(e)}", []
def update_huggingface_dataset(self, renamed_files):
"""Update Hugging Face dataset with new images."""
try:
df = pd.DataFrame(renamed_files)
new_dataset = Dataset.from_pandas(df)
existing_dataset, _ = safe_load_dataset(self.dataset_name)
if existing_dataset and 'train' in existing_dataset:
combined_dataset = concatenate_datasets([existing_dataset['train'], new_dataset])
else:
combined_dataset = new_dataset
combined_dataset.push_to_hub(self.dataset_name, split="train")
return True, f"Successfully updated dataset '{self.dataset_name}' with {len(renamed_files)} new images."
except Exception as e:
return False, f"Error updating Hugging Face dataset: {str(e)}"
# Process Pipeline
def process_pipeline(folder_id, naming_convention):
"""Main pipeline for processing images and updating dataset."""
manager = DatasetManager()
# Step 1: Authenticate Google Drive
auth_success, auth_message = manager.authenticate_drive()
if not auth_success:
return auth_message, []
# Step 2: Download and rename files
success, message, renamed_files = manager.download_and_rename_files(folder_id, naming_convention)
if not success:
return message, []
# Step 3: Update Hugging Face dataset
success, hf_message = manager.update_huggingface_dataset(renamed_files)
return f"{message}\n{hf_message}", renamed_files
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Sports Cards Dataset Processor")
with gr.Box():
gr.Markdown("### Instructions: Upload from Google Drive and Update Hugging Face Dataset")
with gr.Row():
folder_id = gr.Textbox(label="Google Drive Folder ID", placeholder="Enter the folder ID")
naming_convention = gr.Textbox(label="Naming Convention", placeholder="e.g., sports_card")
process_btn = gr.Button("Process Images")
output = gr.Textbox(label="Status")
output_table = gr.Dataframe(label="Processed Files", headers=["Original Name", "New Name", "File Path"])
def process_ui(folder_id, naming_convention):
status, renamed_files = process_pipeline(folder_id, naming_convention)
table_data = [[file['original_name'], file['new_name'], file['file_path']] for file in renamed_files]
return status, table_data
process_btn.click(process_ui, inputs=[folder_id, naming_convention], outputs=[output, output_table])
if __name__ == "__main__":
demo.launch()
|