File size: 6,581 Bytes
85ad390
 
 
bcde0da
b489b3f
85ad390
 
 
 
d86b86d
bcde0da
85ad390
 
 
bcde0da
d86b86d
b489b3f
 
 
d86b86d
 
1552b06
b489b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ad390
4f13b31
85ad390
 
4f13b31
85ad390
b489b3f
85ad390
b489b3f
85ad390
 
d86b86d
 
 
 
1552b06
d86b86d
1552b06
 
 
 
d86b86d
1552b06
85ad390
 
 
 
 
9cc14fb
b489b3f
85ad390
 
 
 
 
 
 
b489b3f
 
 
9cc14fb
b489b3f
 
 
9cc14fb
 
 
b489b3f
 
9cc14fb
 
85ad390
b489b3f
85ad390
b489b3f
 
 
 
85ad390
b489b3f
85ad390
b489b3f
85ad390
9cc14fb
b489b3f
85ad390
9cc14fb
4f13b31
b489b3f
 
 
 
 
 
4f13b31
b489b3f
 
85ad390
 
 
b489b3f
9cc14fb
b489b3f
85ad390
b489b3f
 
85ad390
 
b489b3f
 
 
9cc14fb
85ad390
b489b3f
 
 
9cc14fb
b489b3f
 
 
 
8067321
b489b3f
8067321
b489b3f
8067321
 
b489b3f
 
 
 
 
 
 
 
 
 
 
 
 
85ad390
 
b489b3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from pydrive2.auth import GoogleAuth
from pydrive2.drive import GoogleDrive
import os
import gradio as gr
from datasets import load_dataset, Dataset, concatenate_datasets
import pandas as pd
from PIL import Image
from tqdm import tqdm
import logging
import yaml

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load settings
if not os.path.exists("settings.yaml"):
    raise FileNotFoundError("settings.yaml file is missing. Please add it with 'client_secrets_file'.")

with open('settings.yaml', 'r') as file:
    settings = yaml.safe_load(file)

# Utility Functions
def safe_load_dataset(dataset_name):
    """Load Hugging Face dataset safely."""
    try:
        dataset = load_dataset(dataset_name)
        return dataset, len(dataset['train']) if 'train' in dataset else 0
    except Exception:
        logger.info("No existing dataset found. Starting fresh.")
        return None, 0

def is_valid_image(file_path):
    """Check if a file is a valid image."""
    try:
        with Image.open(file_path) as img:
            img.verify()
        return True
    except:
        return False

# DatasetManager Class
class DatasetManager:
    def __init__(self, local_images_dir="downloaded_cards"):
        self.local_images_dir = local_images_dir
        self.drive = None
        self.dataset_name = "GotThatData/sports-cards"
        os.makedirs(local_images_dir, exist_ok=True)

    def authenticate_drive(self):
        """Authenticate with Google Drive."""
        try:
            gauth = GoogleAuth()
            gauth.settings['client_config_file'] = settings['client_secrets_file']
            
            # Try to load saved credentials
            gauth.LoadCredentialsFile("credentials.txt")
            if gauth.credentials is None:
                gauth.LocalWebserverAuth()
            elif gauth.access_token_expired:
                gauth.Refresh()
            else:
                gauth.Authorize()
            gauth.SaveCredentialsFile("credentials.txt")
            
            self.drive = GoogleDrive(gauth)
            return True, "Successfully authenticated with Google Drive"
        except Exception as e:
            return False, f"Authentication failed: {str(e)}"

    def download_and_rename_files(self, drive_folder_id, naming_convention):
        """Download files from Google Drive and rename them."""
        if not self.drive:
            return False, "Google Drive not authenticated", []
        
        try:
            query = f"'{drive_folder_id}' in parents and trashed=false"
            file_list = self.drive.ListFile({'q': query}).GetList()
            if not file_list:
                return False, "No files found in the specified folder.", []

            existing_dataset, start_index = safe_load_dataset(self.dataset_name)
            renamed_files = []

            for i, file in enumerate(tqdm(file_list, desc="Downloading files", unit="file")):
                if 'mimeType' in file and 'image' in file['mimeType'].lower():
                    new_filename = f"{naming_convention}_{start_index + i + 1}.jpg"
                    file_path = os.path.join(self.local_images_dir, new_filename)
                    file.GetContentFile(file_path)

                    if is_valid_image(file_path):
                        renamed_files.append({
                            'file_path': file_path,
                            'original_name': file['title'],
                            'new_name': new_filename
                        })
                        logger.info(f"Downloaded and renamed: {file['title']} -> {new_filename}")
                    else:
                        logger.error(f"Invalid image detected, removing {file_path}")
                        os.remove(file_path)
            
            return True, f"Processed {len(renamed_files)} images", renamed_files
        except Exception as e:
            return False, f"Error during download: {str(e)}", []

    def update_huggingface_dataset(self, renamed_files):
        """Update Hugging Face dataset with new images."""
        try:
            df = pd.DataFrame(renamed_files)
            new_dataset = Dataset.from_pandas(df)

            existing_dataset, _ = safe_load_dataset(self.dataset_name)
            if existing_dataset and 'train' in existing_dataset:
                combined_dataset = concatenate_datasets([existing_dataset['train'], new_dataset])
            else:
                combined_dataset = new_dataset
            
            combined_dataset.push_to_hub(self.dataset_name, split="train")
            return True, f"Successfully updated dataset '{self.dataset_name}' with {len(renamed_files)} new images."
        except Exception as e:
            return False, f"Error updating Hugging Face dataset: {str(e)}"

# Process Pipeline
def process_pipeline(folder_id, naming_convention):
    """Main pipeline for processing images and updating dataset."""
    manager = DatasetManager()

    # Step 1: Authenticate Google Drive
    auth_success, auth_message = manager.authenticate_drive()
    if not auth_success:
        return auth_message, []

    # Step 2: Download and rename files
    success, message, renamed_files = manager.download_and_rename_files(folder_id, naming_convention)
    if not success:
        return message, []

    # Step 3: Update Hugging Face dataset
    success, hf_message = manager.update_huggingface_dataset(renamed_files)
    return f"{message}\n{hf_message}", renamed_files

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Sports Cards Dataset Processor")

    with gr.Box():
        gr.Markdown("### Instructions: Upload from Google Drive and Update Hugging Face Dataset")
    
    with gr.Row():
        folder_id = gr.Textbox(label="Google Drive Folder ID", placeholder="Enter the folder ID")
        naming_convention = gr.Textbox(label="Naming Convention", placeholder="e.g., sports_card")
        process_btn = gr.Button("Process Images")

    output = gr.Textbox(label="Status")
    output_table = gr.Dataframe(label="Processed Files", headers=["Original Name", "New Name", "File Path"])

    def process_ui(folder_id, naming_convention):
        status, renamed_files = process_pipeline(folder_id, naming_convention)
        table_data = [[file['original_name'], file['new_name'], file['file_path']] for file in renamed_files]
        return status, table_data

    process_btn.click(process_ui, inputs=[folder_id, naming_convention], outputs=[output, output_table])

if __name__ == "__main__":
    demo.launch()