File size: 2,095 Bytes
32161b2
2d8b72c
32161b2
7ee16c9
7e7729e
d2086ac
910563c
 
 
 
d2086ac
 
910563c
d2086ac
910563c
 
 
 
2d8b72c
 
910563c
 
 
 
7e7729e
 
910563c
2d8b72c
910563c
 
2d8b72c
 
7e7729e
910563c
 
d2086ac
910563c
 
 
 
 
 
 
 
 
d2086ac
910563c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8b72c
32161b2
af9ddfc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
from huggingface_hub import InferenceClient

client = InferenceClient("Grandediw/lora_model")

def respond(message, history, system_message, max_tokens, temperature, top_p):
    # Build the prompt from system_message and the conversation history
    # history is a list of (user_message, assistant_message) tuples
    prompt = system_message.strip() + "\n\n"

    for user_msg, assistant_msg in history:
        if user_msg:
            prompt += f"User: {user_msg}\n"
        if assistant_msg:
            prompt += f"Assistant: {assistant_msg}\n"
    
    # Add the latest user message
    prompt += f"User: {message}\nAssistant:"

    response = ""
    # Use text_generation instead of chat_completion
    for partial in client.text_generation(
        prompt=prompt,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        stream=True
    ):
        # partial is a TextGenerationStreamResponse
        token = partial.token.text  # Extract the generated token text
        response += token
        yield response

with gr.Blocks(title="Text Generation Interface") as demo:
    gr.Markdown("# LORA Text Generation Demo")

    with gr.Column():
        system_message = gr.Textbox(
            value="You are a helpful and friendly assistant.",
            label="System Prompt",
            lines=3,
        )
        max_tokens = gr.Slider(
            minimum=1, maximum=2048, value=512, step=1,
            label="Max new tokens"
        )
        temperature = gr.Slider(
            minimum=0.1, maximum=4.0, value=0.7, step=0.1,
            label="Temperature"
        )
        top_p = gr.Slider(
            minimum=0.1, maximum=1.0, value=0.95, step=0.05,
            label="Top-p"
        )

    # Use type='tuple' if you want to maintain old style conversation format
    # or omit it to use the default message format.
    chat = gr.ChatInterface(
        fn=respond,
        additional_inputs=[system_message, max_tokens, temperature, top_p],
        type='tuples'
    )

if __name__ == "__main__":
    demo.launch()