File size: 14,049 Bytes
0042ac6
 
 
 
34b9ee4
 
 
 
 
 
 
1cd9fb5
 
34b9ee4
 
 
 
0042ac6
 
 
 
 
 
 
 
4b40bf3
0de90bb
4b40bf3
0de90bb
 
 
 
 
 
 
 
0042ac6
4b40bf3
 
 
 
 
 
 
0042ac6
 
4b40bf3
 
 
 
 
0042ac6
 
ed5b21a
 
 
 
0042ac6
 
ed5b21a
 
 
 
 
 
 
 
 
 
 
0042ac6
 
4b40bf3
 
 
0de90bb
0042ac6
4b40bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0042ac6
ed5b21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b9ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd9fb5
34b9ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b40bf3
34b9ee4
 
 
 
e3efb39
34b9ee4
 
 
ed5b21a
 
 
 
0de90bb
ed5b21a
 
34b9ee4
ed5b21a
4b40bf3
ed5b21a
 
4b40bf3
 
 
 
ed5b21a
 
 
34b9ee4
ed5b21a
 
 
34b9ee4
ed5b21a
 
34b9ee4
0042ac6
ed5b21a
0042ac6
ed5b21a
0042ac6
 
 
 
 
 
4b40bf3
0042ac6
ed5b21a
0042ac6
4b40bf3
ed5b21a
 
 
0042ac6
 
 
 
ed5b21a
 
 
0042ac6
ed5b21a
 
0042ac6
ed5b21a
0042ac6
 
ed5b21a
 
0042ac6
1cd9fb5
0042ac6
 
ed5b21a
0042ac6
ed5b21a
 
0042ac6
ed5b21a
4b40bf3
34b9ee4
 
 
 
 
 
 
 
 
 
 
 
1cd9fb5
 
 
 
 
 
 
 
 
55943e1
0042ac6
55943e1
 
 
34b9ee4
 
 
 
ed5b21a
 
 
34b9ee4
8500fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34b9ee4
 
 
 
 
 
 
55943e1
 
34b9ee4
1cd9fb5
 
 
 
 
 
 
 
 
 
bf97d3e
1cd9fb5
 
bf97d3e
 
 
1cd9fb5
34b9ee4
 
 
 
 
 
 
 
 
ed5b21a
34b9ee4
ed5b21a
34b9ee4
 
1cd9fb5
 
 
 
 
 
 
 
ed5b21a
 
1cd9fb5
ed5b21a
1cd9fb5
 
 
 
34b9ee4
ed5b21a
 
34b9ee4
ed5b21a
1cd9fb5
ed5b21a
 
34b9ee4
ed5b21a
34b9ee4
 
1cd9fb5
 
34b9ee4
ed5b21a
 
34b9ee4
 
ed5b21a
34b9ee4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import random
from dataclasses import dataclass
from typing import List, Optional
import gradio as gr
import numpy as np
import torch
from PIL import Image
from skimage.feature import graycomatrix, graycoprops
from torchvision import transforms

NUM_ROUNDS = 10
PROB_THRESHOLD = 0.3

# Load the model
model = torch.jit.load("SuSy.pt")

@dataclass
class GameResults:
    user_guess: str
    model_guess: str
    correct_answer: str

class GameState:
    def __init__(self):
        self.reset()
    
    def reset(self):
        self.user_score = 0
        self.model_score = 0
        self.current_round = 0
        self.total_rounds = NUM_ROUNDS
        self.game_images: List[str] = []
        self.is_game_active = False
        self.last_results: Optional[GameResults] = None
        self.processing_submission = False
    
    def start_new_game(self) -> bool:
        if self.is_game_active:
            return False
        self.reset()
        self.game_images = load_images()
        self.is_game_active = True
        return True
    
    def can_submit_guess(self) -> bool:
        return (
            self.is_game_active and 
            not self.processing_submission and 
            self.current_round < self.total_rounds
        )
    
    def start_submission(self) -> bool:
        if not self.can_submit_guess():
            return False
        self.processing_submission = True
        return True
    
    def finish_submission(self, results: GameResults):
        if results.user_guess == results.correct_answer:
            self.user_score += 1
        if results.model_guess == results.correct_answer:
            self.model_score += 1
        
        self.last_results = results
        self.current_round += 1
        self.processing_submission = False
        
        if self.current_round >= self.total_rounds:
            self.is_game_active = False
    
    def get_current_image(self) -> Optional[str]:
        if not self.is_game_active or self.current_round >= len(self.game_images):
            return None
        return self.game_images[self.current_round]
    
    def get_game_over_message(self) -> str:
        if self.user_score > self.model_score:
            return """
            <div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>
                🎉 Congratulations! You won! 🎉<br>
                You've outperformed SuSy in detecting AI-generated images.<br>
                Click 'Start New Game' to play again.
            </div>
            """
        elif self.user_score < self.model_score:
            return """
            <div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>
                Better luck next time! SuSy won this round.<br>
                Keep practicing to improve your detection skills.<br>
                Click 'Start New Game' to try again.
            </div>
            """
        else:
            return """
            <div style='text-align: center; margin-top: 20px; font-size: 1.2em;'>
                It's a tie! You matched SuSy's performance!<br>
                You're getting good at this.<br>
                Click 'Start New Game' to play again.
            </div>
            """

def create_score_html(game_state: GameState):
    results_html = ""
    if game_state.last_results:
        results_html = f"""
        <div style='margin-top: 1rem; padding: 1rem; background-color: #e0e0e0; border-radius: 8px; color: #333;'>
            <h4 style='color: #333; margin-bottom: 0.5rem;'>Last Round Results:</h4>
            <p style='color: #333;'>Your guess: {game_state.last_results.user_guess}</p>
            <p style='color: #333;'>Model's guess: {game_state.last_results.model_guess}</p>
            <p style='color: #333;'>Correct answer: {game_state.last_results.correct_answer}</p>
        </div>
        """

    current_display_round = min(game_state.current_round + 1, game_state.total_rounds)
    
    return f"""
    <div style='padding: 1rem; background-color: #f0f0f0; border-radius: 8px; color: #333;'>
        <h3 style='margin-bottom: 1rem; color: #333;'>Score Board</h3>
        <div style='display: flex; justify-content: space-around;'>
            <div>
                <h4 style='color: #333;'>You</h4>
                <p style='font-size: 1.5rem; color: #333;'>{game_state.user_score}</p>
            </div>
            <div>
                <h4 style='color: #333;'>AI Model</h4>
                <p style='font-size: 1.5rem; color: #333;'>{game_state.model_score}</p>
            </div>
        </div>
        <div style='margin-top: 1rem;'>
            <p style='color: #333;'>Round: {current_display_round}/{game_state.total_rounds}</p>
        </div>
        {results_html}
    </div>
    """

def process_image(image):
    # Set Parameters
    top_k_patches = 5
    patch_size = 224

    # Get the image dimensions
    width, height = image.size

    # Calculate the number of patches
    num_patches_x = width // patch_size
    num_patches_y = height // patch_size

    # Divide the image in patches
    patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8)
    for i in range(num_patches_x):
        for j in range(num_patches_y):
            x = i * patch_size
            y = j * patch_size
            patch = image.crop((x, y, x + patch_size, y + patch_size))
            patches[i * num_patches_y + j] = np.array(patch)

    # Compute the most relevant patches
    dissimilarity_scores = []
    for patch in patches:
        transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()])
        grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0)
        glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True)
        dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0])

    # Sort patch indices by their dissimilarity score
    sorted_indices = np.argsort(dissimilarity_scores)[::-1]

    # Extract top k patches and convert them to tensor
    top_patches = patches[sorted_indices[:top_k_patches]]
    top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0

    # Predict patches
    model.eval()
    with torch.no_grad():
        preds = model(top_patches)

    # Process results
    classes = ['Authentic', 'DALL·E 3', 'Stable Diffusion 1.x', 'MJ V5/V6', 'MJ V1/V2', 'Stable Diffusion XL']
    mean_probs = preds.mean(dim=0).numpy()
    
    # Create a dictionary of class probabilities
    class_probs = {cls: prob for cls, prob in zip(classes, mean_probs)}
    
    # Sort probabilities in descending order
    sorted_probs = dict(sorted(class_probs.items(), key=lambda item: item[1], reverse=True))

    return sorted_probs

def load_images() -> List[str]:
    real_image_folder = "real_images"
    fake_image_folder = "fake_images"
    real_images = [os.path.join(real_image_folder, img) for img in os.listdir(real_image_folder)]
    fake_images = [os.path.join(fake_image_folder, img) for img in os.listdir(fake_image_folder)]
    selected_images = random.sample(real_images, NUM_ROUNDS // 2) + random.sample(fake_images, NUM_ROUNDS // 2)
    random.shuffle(selected_images)
    return selected_images

def start_game(state: Optional[GameState]):
    # Initialize new game state if none exists
    if state is None:
        state = GameState()
    
    if not state.start_new_game():
        return [state] + [gr.update()] * 6
    
    current_image = Image.open(state.get_current_image())
    
    return [
        state,
        gr.update(value=current_image, visible=True),
        gr.update(visible=False),
        gr.update(visible=True, interactive=True),
        gr.update(visible=True, interactive=True),
        create_score_html(state),
        gr.update(visible=False),
    ]

def submit_guess(user_guess: str, state: GameState):
    if not state.can_submit_guess():
        return [state] + [gr.update()] * 6
    
    if not state.start_submission():
        return [state] + [gr.update()] * 6
    
    try:
        current_image_path = state.get_current_image()
        if not current_image_path:
            return [state] + [gr.update()] * 6
        
        current_image = Image.open(current_image_path)
        model_prediction = process_image(current_image)
        model_guess = "Real" if model_prediction['Authentic'] > PROB_THRESHOLD else "Fake"
        correct_answer = "Real" if "real_images" in current_image_path else "Fake"
        
        # Update game state with results
        results = GameResults(user_guess, model_guess, correct_answer)
        state.finish_submission(results)
        
        # Check if game is over
        if not state.is_game_active:
            return [
                state,
                gr.update(value=None, visible=False),
                gr.update(visible=True),
                gr.update(visible=False),
                gr.update(visible=False),
                create_score_html(state),
                gr.update(visible=True, value=state.get_game_over_message())
            ]
        
        # Get next image
        next_image_path = state.get_current_image()
        if not next_image_path:
            return [state] + [gr.update()] * 6
        next_image = Image.open(next_image_path)
        
        return [
            state,
            gr.update(value=next_image, visible=True),
            gr.update(visible=False),
            gr.update(visible=True, interactive=True),
            gr.update(visible=True, interactive=True),
            create_score_html(state),
            gr.update(visible=False)
        ]

    except Exception as e:
        state.processing_submission = False
        raise e

# Custom CSS
custom_css = """
#game-container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
}
#start-button {
    max-width: 200px;
    margin: 0 auto;
}
#guess-buttons {
    display: flex;
    gap: 10px;
    justify-content: center;
    margin-top: 20px;
}
.guess-button {
    min-width: 120px;
}
.image-container img {
    max-height: 640px !important;
    width: auto !important;
    object-fit: contain !important;
}
"""

# Define Gradio interface
with gr.Blocks(css=custom_css) as iface:
    # State variable for the game
    state = gr.State(None)
    
    with gr.Column(elem_id="game-container"):
        gr.HTML("""
            <table style="border-collapse: collapse; border: none; padding: 20px;">
            <tr style="border: none;">
                <td style="border: none; vertical-align: top; padding-right: 30px; padding-left: 30px;">
                <img src="https://cdn-uploads.huggingface.co/production/uploads/62f7a16192950415b637e201/NobqlpFbFkTyBi1LsT9JE.png" alt="SuSy Logo" width="120" style="margin-bottom: 10px;">
                </td>
                <td style="border: none; vertical-align: top; padding: 10px;">
                <p style="margin-bottom: 15px;">Compete against SuSy to spot AI-Generated images! SuSy can distinguish between authentic images and those generated by DALL·E, Midjourney and Stable Diffusion.</p>
                <p style="margin-top: 15px;">Learn more about SuSy: <a href="https://arxiv.org/abs/2409.14128">Present and Future Generalization of Synthetic Image Detectors</a></p>
                <p style="margin-top: 15px;">
                    Enter the SuSy-verse!
                    <a href="https://huggingface.co/HPAI-BSC/SuSy">Model</a> |
                    <a href="https://github.com/HPAI-BSC/SuSy">Code</a> |
                    <a href="https://huggingface.co/datasets/HPAI-BSC/SuSy-Dataset">Dataset</a>
                </p>
                </td>
            </tr>
            </table>
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                image_display = gr.Image(
                    type="pil",
                    label="Current Image",
                    interactive=False,
                    visible=False,
                    elem_classes=["image-container"]
                )
                with gr.Row(elem_id="guess-buttons"):
                    real_button = gr.Button(
                        "Real",
                        visible=False,
                        variant="primary",
                        elem_classes=["guess-button"]
                    )
                    fake_button = gr.Button(
                        "Fake",
                        visible=False,
                        variant="primary",
                        elem_classes=["guess-button"]
                    )
            
            with gr.Column(scale=1):
                score_display = gr.HTML()
        
        with gr.Row():
            with gr.Column(elem_id="start-button"):
                start_button = gr.Button("Start New Game", variant="primary", size="sm")
        
        feedback_display = gr.Markdown(visible=False)
        
        # Event handlers
        start_button.click(
            fn=start_game,
            inputs=[state],
            outputs=[
                state,
                image_display,
                start_button,
                real_button,
                fake_button,
                score_display,
                feedback_display
            ]
        )
        
        real_button.click(
            fn=lambda state: submit_guess("Real", state),
            inputs=[state],
            outputs=[
                state,
                image_display,
                start_button,
                real_button,
                fake_button,
                score_display,
                feedback_display,
            ],
        )

        fake_button.click(
            fn=lambda state: submit_guess("Fake", state),
            inputs=[state],
            outputs=[
                state,
                image_display,
                start_button,
                real_button,
                fake_button,
                score_display,
                feedback_display,
            ],
        )


# Launch the interface
iface.launch()