File size: 3,258 Bytes
9c9cd08
 
 
 
 
fd61b2a
9c9cd08
de591bd
9c9cd08
 
828f76f
9c9cd08
de591bd
828f76f
9c9cd08
 
10fb1e8
9c9cd08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10fb1e8
9c9cd08
 
10fb1e8
9c9cd08
 
 
 
 
 
 
 
48ecfaa
9c9cd08
 
 
 
 
 
 
 
10fb1e8
fd61b2a
ba0292c
9c9cd08
ba0292c
 
 
 
 
6d1120a
ba0292c
 
 
 
 
 
 
 
 
 
 
6f225ef
ba0292c
9c9cd08
 
 
 
 
 
de591bd
9c9cd08
 
 
 
ba0292c
9c9cd08
ba0292c
 
 
 
 
10fb1e8
ba0292c
 
 
c4854be
fd61b2a
ba0292c
c4854be
 
48ecfaa
cd9d2d6
e8207b5
a7f72be
9c9cd08
 
 
cd9d2d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import gradio as gr

from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
)


def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [255, 0, 0],
        [255, 94, 0],
        [255, 187, 0],
        [255, 228, 0],
        [171, 242, 0],
        [29, 219, 22],
        [0, 216, 255],
        [0, 84, 255],
        [1, 0, 255],
        [95, 0, 255],
        [255, 0, 221],
        [255, 0, 127],
        [255, 167, 167],
        [242, 150, 97],
        [204, 166, 61],
        [153, 138, 0],
        [71, 102, 0],
        [47, 157, 39],
        [116, 116, 116],
    ]


labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())


def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]


def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')

    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)

    return fig


def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits
    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    )  # We reverse the shape of `image` because `image.size` returns width and height.
    seg = tf.math.argmax(logits, axis=-1)[0]
    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )  # height, width, 3
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    # Show image + mask
    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig


demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(1024, 1024)),
                    outputs=['plot'],
                    examples=["city-1.jpg", "city-2.jpg", "city-3.jpg", "city-4.jpg", "city-5.jpg"],
                    allow_flagging='never')


demo.launch()