Spaces:
Runtime error
Runtime error
File size: 3,258 Bytes
9c9cd08 fd61b2a 9c9cd08 de591bd 9c9cd08 828f76f 9c9cd08 de591bd 828f76f 9c9cd08 10fb1e8 9c9cd08 10fb1e8 9c9cd08 10fb1e8 9c9cd08 48ecfaa 9c9cd08 10fb1e8 fd61b2a ba0292c 9c9cd08 ba0292c 6d1120a ba0292c 6f225ef ba0292c 9c9cd08 de591bd 9c9cd08 ba0292c 9c9cd08 ba0292c 10fb1e8 ba0292c c4854be fd61b2a ba0292c c4854be 48ecfaa cd9d2d6 e8207b5 a7f72be 9c9cd08 cd9d2d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[255, 0, 0],
[255, 94, 0],
[255, 187, 0],
[255, 228, 0],
[171, 242, 0],
[29, 219, 22],
[0, 216, 255],
[0, 84, 255],
[1, 0, 255],
[95, 0, 255],
[255, 0, 221],
[255, 0, 127],
[255, 167, 167],
[242, 150, 97],
[204, 166, 61],
[153, 138, 0],
[71, 102, 0],
[47, 157, 39],
[116, 116, 116],
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(1024, 1024)),
outputs=['plot'],
examples=["city-1.jpg", "city-2.jpg", "city-3.jpg", "city-4.jpg", "city-5.jpg"],
allow_flagging='never')
demo.launch()
|